コード例 #1
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_you_can_observe_attrs_from_the_unit_group() -> None:
    n = 2
    ug = un.UnitGroup(size=n)
    for attr in ug.loggable_attrs:
        logs = ug.observe(attr)
        assert logs[0] == {"unit": 0, attr: getattr(ug, attr)[0]}
        assert logs[1] == {"unit": 1, attr: getattr(ug, attr)[1]}
コード例 #2
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_unitgroup_has_the_same_behavior_as_unit() -> None:
    def units_are_equal(u0: un.Unit, u1: un.Unit) -> bool:
        """Returns true if two units have the same state."""
        attrs = ("net_raw", "net", "gc_i", "act", "i_net", "i_net_r", "v_m",
                 "v_m_eq", "adapt", "spike")
        for i in attrs:
            assert getattr(u0, i) == getattr(u1, i)

    unit0 = un.Unit()
    unit1 = un.Unit()
    group = un.UnitGroup(size=2)

    for i in range(500):
        unit0.add_input(0.3)
        unit1.add_input(0.5)
        group.add_input(torch.Tensor([0.3, 0.5]))
        unit0.update_net()
        unit1.update_net()
        group.update_net()
        unit0.update_inhibition(0.1)
        unit1.update_inhibition(0.1)
        group.update_inhibition(torch.Tensor([0.1, 0.1]))
        unit0.update_membrane_potential()
        unit1.update_membrane_potential()
        group.update_membrane_potential()
        unit0.update_activation()
        unit1.update_activation()
        group.update_activation()

        attrs = ("net_raw", "net", "gc_i", "act", "i_net", "i_net_r", "v_m",
                 "v_m_eq", "adapt", "spike")
        for i in attrs:
            group_attr = getattr(group, i)
            assert math.isclose(getattr(unit0, i), group_attr[0], abs_tol=1e-6)
            assert math.isclose(getattr(unit1, i), group_attr[1], abs_tol=1e-6)
コード例 #3
0
ファイル: layer.py プロジェクト: noammiller/leabra7
    def __init__(self, name: str, size: int,
                 spec: specs.LayerSpec = None) -> None:
        self._name = name
        self.size = size

        if spec is None:
            self._spec = specs.LayerSpec()
        else:
            self._spec = spec

        self.units = unit.UnitGroup(size=size, spec=self.spec.unit_spec)

        # Feedback inhibition
        self.fbi = 0.0
        # Global inhibition
        self.gc_i = 0.0
        # Is the layer activation clamped?
        self.clamped = False
        # Is this a hidden layer? (i.e. has never been clamped)
        self.hidden = True
        # Set k units for inhibition
        self.k = max(1, int(round(self.size * self.spec.kwta_pct)))

        # Desired clamping values
        self.act_ext = torch.Tensor(self.size).zero_()
        # Last plus phase activation
        self.acts_p = torch.Tensor(self.size).zero_()
        # Last minus phase activation
        self.acts_m = torch.Tensor(self.size).zero_()
        # Cosine similarity between acts_p and acts_m
        self.cos_diff = 0.0
        # Cosine similiarity between acts_p and acts_m, integrated over trials
        self.cos_diff_avg = 0.0

        # The following two buffers are filled every time self.add_input() is
        # called, and reset at the end of self.activation_cycle()

        # Net input (excitation) input buffer. For every cycle, we
        # store the layer inputs here. Once we have all the inputs, we
        # normalize by wt_scale_rel_sum and send to the unit group.
        self.input_buffer = torch.Tensor(self.size).zero_()

        # Sum of the wt_scale_rel parameters for each projection terminating in
        # this layer. We use this to normalize the inputs before propagating to
        # unit group
        self.wt_scale_rel_sum = 0.0

        # When adding any loggable attribute or property to these lists, update
        # specs.LayerSpec._valid_log_on_cycle (we represent in two places to
        # avoid a circular dependency)
        whole_attrs: List[str] = ["avg_act", "avg_net", "cos_diff_avg", "fbi"]
        parts_attrs: List[str] = [
            "unit_net", "unit_net_raw", "unit_gc_i", "unit_act", "unit_i_net",
            "unit_i_net_r", "unit_v_m", "unit_v_m_eq", "unit_adapt",
            "unit_spike"
        ]

        super().__init__(whole_attrs=whole_attrs, parts_attrs=parts_attrs)
コード例 #4
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_unitgroup_can_calculate_the_threshold_inhibition() -> None:
    group = un.UnitGroup(size=10)
    group.add_input(torch.Tensor(np.linspace(0.3, 0.8, 10)))
    group.update_net()
    g_i_thr = group.g_i_thr(unit_idx=2)
    group.update_inhibition(torch.Tensor(10).fill_(g_i_thr))

    for i in range(200):
        group.update_membrane_potential()

    assert (torch.abs(group.v_m - group.spec.spk_thr) < 1e-6)[2]
コード例 #5
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_unitgroup_can_return_the_top_k_net_input_values() -> None:
    group = un.UnitGroup(size=10)
    group.net = torch.Tensor([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
    assert (group.top_k_net_indices(3) == torch.Tensor([0, 1, 2]).long()).all()
コード例 #6
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_unitgroup_sets_the_spec_you_provide() -> None:
    spec = sp.UnitSpec()
    assert un.UnitGroup(size=3, spec=spec).spec is spec
コード例 #7
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_unitgroup_uses_the_default_spec_if_none_is_provided() -> None:
    group = un.UnitGroup(size=3)
    assert group.spec == sp.UnitSpec()
コード例 #8
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_it_checks_for_unobservable_attrs() -> None:
    ug = un.UnitGroup(3)
    with pytest.raises(ValueError):
        ug.observe("rabbit cm")
コード例 #9
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_unitgroup_update_inhibition_checks_input_dimensions() -> None:
    ug = un.UnitGroup(size=3)
    with pytest.raises(AssertionError):
        ug.update_inhibition(torch.Tensor([1, 2]))
コード例 #10
0
ファイル: test_unit.py プロジェクト: gitter-badger/leabra7
def test_unitgroup_init_checks_that_size_is_positive() -> None:
    with pytest.raises(ValueError):
        un.UnitGroup(size=0)