コード例 #1
0
if '~' in PATH_TO_MARGDISTS:
    PATH_TO_MARGDISTS = os.path.expanduser(PATH_TO_MARGDISTS)

key_nodes = ['k{}-K'.format(pad_string_zeros(i + 1)) for i in range(16)]

# Get set of all available files

marginal_distributions_files = [
    f.replace('.npy', '') for f in listdir(PATH_TO_MARGDISTS)
    if isfile(join(PATH_TO_MARGDISTS, f))
    and string_starts_with(f, 'marginaldist_')
]

# print marginal_distributions_files

sim = lSimF.LeakageSimulatorAESFurious()
sim.fix_key(KEY)
sim.fix_plaintext(PLAINTEXT)
sim.simulate(read_plaintexts=0,
             print_all=0,
             random_plaintexts=0,
             affect_with_noise=False,
             hw_leakage_model=False,
             real_values=True)
leakage_dict = sim.get_leakage_dictionary()

# Get Default Key Distribtion
key_file = [
    k_file for k_file in marginal_distributions_files if '_K_' in k_file
]
if len(key_file) > 1:
コード例 #2
0
def matching_performance():
    # Match to extra

    extra_plaintexts = np.load(PLAINTEXT_EXTRA_FILEPATH)
    extra_keys = np.load(KEY_EXTRA_FILEPATH)
    extra_traces = np.transpose(
        load_trace_data(filepath=TRACEDATA_EXTRA_FILEPATH,
                        memory_mapped=MEMORY_MAPPED))

    musig_dict_path = MUSIGMA_FILEPATH
    musig_dict = pickle.load(open(musig_dict_path, 'ro'))

    # Containers to hold ranks
    rank_dict = {}
    for v, length in variable_dict.iteritems():
        rank_dict[v] = [[] for _ in range(length)]
    all_ranks = []
    trace_average_rank_holder = []

    try:

        for i, (plaintext, key) in enumerate(zip(extra_plaintexts,
                                                 extra_keys)):

            print "Trace {:5}: {}".format(i, plaintext)

            # Simulate actual values
            sim = lSimF.LeakageSimulatorAESFurious()
            sim.fix_key(key)

            sim.fix_plaintext(plaintext)

            sim.simulate(read_plaintexts=0,
                         print_all=0,
                         random_plaintexts=0,
                         affect_with_noise=False,
                         hw_leakage_model=False,
                         real_values=True)
            leakage_dict = sim.get_leakage_dictionary()

            # print 'Plaintext:', plaintext

            # For each node in graph, get time point -> corresponding power value from extra trace data
            # Template match this against MuSigma pairs, get probability distribution
            # Check to see how high actual value scores

            trace_average_rank_list = []

            for var, musigma_array in sorted(musig_dict.iteritems()):
                # Get var name and var number
                var_name, var_number, _ = split_variable_name(var)

                # Actual value of the node
                actual_value = int(leakage_dict[var_name][0][var_number - 1])

                # Time point of node in trace
                time_points = np.load("{}{}.npy".format(
                    TIMEPOINTS_FOLDER, var_name))

                time_point = time_points[var_number - 1]

                # print var
                # print 'Actual Value:', actual_value

                # Power value received
                power_value = extra_traces[i][time_point]
                # print power_value

                # Real Value Match
                matched_dist = real_value_match(var, power_value)
                # print matched_dist
                ranked_dist = np.array(matched_dist).argsort()[::-1]
                # print ranked_dist
                rank = ranked_dist[actual_value]
                # print rank
                #
                # print zip(ranked_dist, matched_dist)
                #
                # exit(1)

                # print "-> {} {}, Ranked: {}".format(var_name, var_number, ranked_dist[actual_value])
                # Add to Ranked List
                rank_dict[var_name][var_number - 1].append(rank)
                all_ranks.append(rank)
                trace_average_rank_list.append(rank)

            trace_average_rank_holder.append(
                get_average(trace_average_rank_list))

            # if i >= 100:
            #     break

    except KeyboardInterrupt:
        pass
    finally:

        # Print Statistics
        for v, l in rank_dict.iteritems():
            for i, lst in enumerate(l):
                print "{}{}:\n".format(v, pad_string_zeros(i + 1))
                print_statistics(lst)

        # ALL
        print "* ALL NODES RANK STATISTICS *"
        print_statistics(all_ranks)

        print "* AVERAGE RANK PER TRACE STATISTICS *"
        print_statistics(trace_average_rank_holder)
コード例 #3
0
def get_trace_data_and_plaintexts(just_keys_and_plaintexts=False):

    print "+ Trace File: {}\n+ Size: {} bytes\n".format(
        TRACE_FILE, os.path.getsize(TRACE_FILE))

    traces, samples, samplespace, float_coding, data_space, start_offset = parse_header(
    )

    profile_traces, attack_traces, _, _ = load_meta()

    bytes_in_trace = (samples * samplespace) + data_space
    print "Traces: {}\nSamples: {}\nSample Space: {}\nData Space: {}\nFloat Coding: {}\nStart Offset: {}\n".format(
        traces, samples, samplespace, data_space, float_coding, start_offset)
    offset = start_offset

    coding = np.float32 if float_coding else np.int16

    if not just_keys_and_plaintexts:
        if MEMORY_MAPPED:
            all_data = np.memmap(TRACEDATA_FILEPATH,
                                 shape=(profile_traces, samples),
                                 mode='w+',
                                 dtype=coding)
            if profile_traces < traces:
                extra_data = np.memmap(TRACEDATA_EXTRA_FILEPATH,
                                       shape=(attack_traces, samples),
                                       mode='w+',
                                       dtype=coding)
        else:
            all_data = np.empty([profile_traces, samples], dtype=coding)
            if profile_traces < traces:
                extra_data = np.empty([attack_traces, samples], dtype=coding)

    all_plaintexts = np.empty([profile_traces, 16], dtype=np.int16)
    extra_plaintexts = np.empty([attack_traces, 16], dtype=np.int16)
    all_keys = np.empty([profile_traces, 16], dtype=np.int16)
    extra_keys = np.empty([attack_traces, 16], dtype=np.int16)

    percent = traces / 100

    for t in range(traces):

        if PRINT:
            print "*** Trace {} ***".format(t)

        if PRINT:
            print "Length of File: {}".format(os.path.getsize(TRACE_FILE))
            print "Offset: {}".format(offset)
            final_byte = offset + data_space + (samples * samplespace)
            print "Final Byte: {}".format(final_byte)
            print "Is this ok: {}".format(
                final_byte <= os.path.getsize(TRACE_FILE))
        title_data = read_to_list(offset, data_space)

        if not just_keys_and_plaintexts:
            trace_data = read_to_list(offset + data_space,
                                      samples,
                                      number_of_bytes=samplespace,
                                      signedint=True,
                                      float_coding=float_coding)

        if PRINT:
            print "First 100 values of trace data:\n{}\n".format(
                list(trace_data[:100]))

        if data_space == 32:
            plaintext = title_data[:16]
            ciphertext = title_data[16:32]
            key = KEY
        elif data_space == 48:
            # plaintext = title_data[:16]
            # key = title_data[16:32]
            # ciphertext = title_data[32:48]
            key = title_data[:16]
            plaintext = title_data[16:32]
            ciphertext = title_data[32:48]

        if PRINT:
            print "Key:        {}".format(key)
            print "Plaintext:  {}".format(plaintext)
            print "Ciphertext: {}".format(ciphertext)
            print_new_line()

        # Simulate
        sim = lSimF.LeakageSimulatorAESFurious()
        sim.fix_key(key)
        sim.fix_plaintext(plaintext)
        sim.simulate(read_plaintexts=0,
                     print_all=0,
                     random_plaintexts=0,
                     affect_with_noise=False,
                     hw_leakage_model=False,
                     real_values=True)
        leakage_dict = sim.get_leakage_dictionary()

        simulated_ciphertext = leakage_dict['p'][0][-16:]
        simulated_end_of_round_one = leakage_dict['p'][0][16:32]
        simulated_end_of_g2 = leakage_dict['t'][0][32:48]

        if PRINT:
            print "* SIMULATED *"
            print "Key:        {}".format(leakage_dict['k'][:16])
            print "Plaintext:  {}".format(leakage_dict['p'][0][:16])
            print "Ciphertext: {}".format(simulated_ciphertext)
            print "Eof Round1: {}".format(simulated_end_of_round_one)
            print "End of G2:  {}".format(simulated_end_of_g2)

            print_new_line()

        # Check for correctness
        if CHECK_CORRECTNESS and not (
            (ciphertext == simulated_ciphertext).all() or
            (ciphertext == simulated_end_of_round_one).all() or
            (ciphertext == simulated_end_of_g2).all()):
            print "*** Error in Trace {}: Did not Match!".format(t)
            raise ValueError
        elif PRINT:
            print "+ Checked: Correct!"

        # Add Trace Data to all_data

        if t < profile_traces:
            if not just_keys_and_plaintexts:
                all_data[t] = np.array(trace_data)
            all_plaintexts[t] = np.array(plaintext)
            all_keys[t] = np.array(key)
        else:
            if not just_keys_and_plaintexts:
                extra_data[t - profile_traces] = np.array(trace_data)
            extra_plaintexts[t - profile_traces] = np.array(plaintext)
            extra_keys[t - profile_traces] = np.array(key)

        if (t % percent) == 0:
            print "{}% Complete".format(t / percent)

        if PRINT:
            print "This is what we stored:\n{}\n".format(all_data[t])
            print_new_line()

        # exit(1)

        # Increment offset
        offset = offset + bytes_in_trace

        # # Just first
        # if t > 3:
        #     exit(1)

    if not just_keys_and_plaintexts:
        if MEMORY_MAPPED:
            del all_data
            if profile_traces < traces:
                del extra_data
        else:
            # Save the tranpose as a file!
            np.save(TRACEDATA_FILEPATH, np.transpose(all_data))
            # Save the tranpose as a file!
            np.save(TRACEDATA_EXTRA_FILEPATH, np.transpose(extra_data))

    # Save plaintexts as file
    np.save(PLAINTEXT_FILEPATH, all_plaintexts)
    # Save plaintexts as file
    np.save(PLAINTEXT_EXTRA_FILEPATH, extra_plaintexts)
    # Save keys as file
    np.save(KEY_FILEPATH, all_keys)
    # Save keys as file
    np.save(KEY_EXTRA_FILEPATH, extra_keys)

    print "Saved and Completed!"
    print_new_line()
コード例 #4
0
def simulate_data_from_plaintexts():

    extra = [0, 1]

    # for plaintext_count, plaintext_filepath in enumerate([PLAINTEXT_FILEPATH, PLAINTEXT_EXTRA_FILEPATH]):
    for use_extra_data in extra:

        plaintext_filepath = PLAINTEXT_EXTRA_FILEPATH if use_extra_data else PLAINTEXT_FILEPATH
        key_filepath = KEY_EXTRA_FILEPATH if use_extra_data else KEY_FILEPATH
        # Show plaintexts!
        plaintexts = np.load(plaintext_filepath, mmap_mode='r')
        keys = np.load(key_filepath, mmap_mode='r')
        traces = plaintexts.shape[0]

        # k = np.empty([16, traces], dtype=np.uint8)
        # p = np.empty([32, traces], dtype=np.uint8)
        # t = np.empty([32, traces], dtype=np.uint8)
        # s = np.empty([32, traces], dtype=np.uint8)
        # mc = np.empty([16, traces], dtype=np.uint8)
        # xt = np.empty([16, traces], dtype=np.uint8)
        # cm = np.empty([16, traces], dtype=np.uint8)
        # h = np.empty([12, traces], dtype=np.uint8)

        k = np.empty([48, traces], dtype=np.uint8)
        p = np.empty([48, traces], dtype=np.uint8)
        t = np.empty([48, traces], dtype=np.uint8)
        s = np.empty([48, traces], dtype=np.uint8)
        mc = np.empty([32, traces], dtype=np.uint8)
        xt = np.empty([32, traces], dtype=np.uint8)
        cm = np.empty([32, traces], dtype=np.uint8)
        h = np.empty([24, traces], dtype=np.uint8)
        sk = np.empty([8, traces], dtype=np.uint8)
        xk = np.empty([2, traces], dtype=np.uint8)

        for i, (plaintext, key) in enumerate(zip(plaintexts, keys)):

            if PRINT:
                print "Trace {}\nPlaintext: {}\nKey: {}".format(
                    i, plaintext, key)

            sim = lSimF.LeakageSimulatorAESFurious()
            sim.fix_key(key)
            sim.fix_plaintext(plaintext)
            sim.simulate(read_plaintexts=0,
                         print_all=0,
                         random_plaintexts=0,
                         affect_with_noise=False,
                         hw_leakage_model=False,
                         real_values=True)
            leakage_dict = sim.get_leakage_dictionary()

            for j in range(48):
                # p
                p[j][i] = leakage_dict['p'][0][j]
                # t
                t[j][i] = leakage_dict['t'][0][j]
                # s
                s[j][i] = leakage_dict['s'][0][j]

                # k
                k[j][i] = leakage_dict['k'][j]

                if j < 32:
                    # mc
                    mc[j][i] = leakage_dict['mc'][0][j]
                    # xt
                    xt[j][i] = leakage_dict['xt'][0][j]
                    # cm
                    cm[j][i] = leakage_dict['cm'][0][j]

                    if j < 24:
                        # h
                        h[j][i] = leakage_dict['h'][0][j]

                        if j < 8:
                            sk[j][i] = leakage_dict['sk'][j]

                            if j < 2:
                                xk[j][i] = leakage_dict['xk'][j]

            if traces < 100:
                print "Finished Trace {}".format(i)
            elif i % (traces // 100) == 0:
                print "{}% Complete".format(i / (traces // 100))

        # Save to files!
        extra_string = "extra_" if use_extra_data == 1 else ""
        np.save(REALVALUES_FOLDER + extra_string + 'k.npy', k)
        np.save(REALVALUES_FOLDER + extra_string + 'p.npy', p)
        np.save(REALVALUES_FOLDER + extra_string + 't.npy', t)
        np.save(REALVALUES_FOLDER + extra_string + 's.npy', s)
        np.save(REALVALUES_FOLDER + extra_string + 'mc.npy', mc)
        np.save(REALVALUES_FOLDER + extra_string + 'xt.npy', xt)
        np.save(REALVALUES_FOLDER + extra_string + 'cm.npy', cm)
        np.save(REALVALUES_FOLDER + extra_string + 'h.npy', h)
        np.save(REALVALUES_FOLDER + extra_string + 'sk.npy', sk)
        np.save(REALVALUES_FOLDER + extra_string + 'xk.npy', xk)

        print "Saved and Completed!"
        print_new_line()
コード例 #5
0
def lda_matching_performance(tprange=200):
    # Match to extra

    extra_plaintexts = np.load(NUMPY_EXTRA_PLAINTEXT_FILE)
    extra_traces = np.transpose(
        load_trace_data(filepath=NUMPY_EXTRA_TRACE_FILE,
                        memory_mapped=MEMORY_MAPPED))

    print extra_traces.shape

    # Containers to hold ranks
    rank_dict = {}
    for v, length in variable_dict.iteritems():
        rank_dict[v] = [[] for x in range(length)]
    all_ranks = []
    trace_average_rank_holder = []

    try:

        for i, plaintext in enumerate(extra_plaintexts):

            print "Trace {:5}: {}".format(i, plaintext)

            # Simulate actual values
            sim = lSimF.LeakageSimulatorAESFurious()
            print "TODO"
            break
            sim.fix_key(KEY)
            sim.fix_plaintext(plaintext)
            sim.simulate(read_plaintexts=0,
                         print_all=0,
                         random_plaintexts=0,
                         affect_with_noise=False,
                         hw_leakage_model=False,
                         real_values=True)
            leakage_dict = sim.get_leakage_dictionary()

            # For each node in graph, get time point -> corresponding power value from extra trace data
            # Template match this against MuSigma pairs, get probability distribution
            # Check to see how high actual value scores

            trace_average_rank_list = []

            for var_name, vlength in variable_dict.iteritems():

                time_points = np.load("{}{}.npy".format(
                    TIMEPOINTS_FOLDER, var_name))

                for var_number in range(vlength):
                    # Get Time Point
                    time_point = time_points[var_number - 1]

                    # Load linDisAnalysis
                    lda = pickle.load(
                        open(
                            "{}{}_{}_{}.p".format(LDA_FOLDER, tprange,
                                                  var_name, var_number), "ro"))
                    # Get Trace Data around time point
                    X = extra_traces[i, time_point - (tprange / 2):time_point +
                                     (tprange / 2)]

                    # Predict Values
                    predicted_probabilities = lda.predict_proba([X])[0]

                    # Get Actual Values
                    actual_value = (
                        leakage_dict[var_name][0][var_number]).astype(np.uint8)

                    # Get Rank
                    temp = predicted_probabilities.argsort()[::-1]
                    ranked_dist = np.empty_like(temp)
                    ranked_dist[temp] = np.arange(len(predicted_probabilities))

                    rank = ranked_dist[actual_value] + 1
                    # top_ranked = np.where(ranked_dist == 0)
                    max_prob = np.max(predicted_probabilities)
                    # max_index = np.where(predicted_probabilities == max_prob)

                    # if var_name == 't':
                    #     print "TEST!"
                    #     print "Variable {}{}".format(var_name, var_number)
                    #     print "Real Value: {}".format(actual_value)
                    #     print "Predicted Probabilities:\n{}\n".format(predicted_probabilities)
                    #     print "Top Ranked: {} ({})".format(top_ranked, predicted_probabilities[top_ranked])
                    #     print "CHECK: Max Value: {} ({})".format(max_prob, max_index)
                    #     print "Our Rank: {} ({})".format(rank, predicted_probabilities[actual_value])

                    # exit(1)

                    # Add to Ranked List
                    rank_dict[var_name][var_number - 1].append(rank)
                    all_ranks.append(rank)
                    trace_average_rank_list.append(rank)

                trace_average_rank_holder.append(
                    get_average(trace_average_rank_list))

            # exit(1)

    except KeyboardInterrupt:
        pass
    finally:

        # Print Statistics
        for v, l in rank_dict.iteritems():
            for i, lst in enumerate(l):
                print "{}{}:\n".format(v, pad_string_zeros(i + 1))
                print_statistics(lst)

        # ALL
        print "* ALL NODES RANK STATISTICS *"
        print_statistics(all_ranks)

        print "* AVERAGE RANK PER TRACE STATISTICS *"
        print_statistics(trace_average_rank_holder)

        pass