def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext, log_dependent=True): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nparts = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) # timestepping control if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 current_step = 0 constant_cfl = False # some i/o frequencies nstatus = 1 nhealth = 1 nrestart = 5 nviz = 1 dim = 2 rst_path = "restart_data/" rst_pattern = ( rst_path + "{cname}-{step:04d}-{rank:04d}.pkl" ) if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nparts else: # generate the grid from scratch nel_1d = 16 box_ll = -5.0 box_ur = 5.0 from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim, b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim) local_mesh, global_nelements = generate_and_distribute_mesh(comm, generate_mesh) local_nelements = local_mesh.nelements order = 3 discr = EagerDGDiscretization( actx, local_mesh, order=order, mpi_communicator=comm ) nodes = thaw(discr.nodes(), actx) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) if log_dependent: logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ ("min_pressure", "\n------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n")]) # Pyrometheus initialization from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") sol = cantera.Solution(phase_id="gas", source=mech_cti) from mirgecom.thermochemistry import make_pyrometheus_mechanism_class pyrometheus_mechanism = make_pyrometheus_mechanism_class(sol)(actx.np) nspecies = pyrometheus_mechanism.num_species eos = PyrometheusMixture(pyrometheus_mechanism) from mirgecom.gas_model import GasModel, make_fluid_state gas_model = GasModel(eos=eos) from pytools.obj_array import make_obj_array y0s = np.zeros(shape=(nspecies,)) for i in range(nspecies-1): y0s[i] = 1.0 / (10.0 ** (i + 1)) spec_sum = sum([y0s[i] for i in range(nspecies-1)]) y0s[nspecies-1] = 1.0 - spec_sum # Mixture defaults to STP (p, T) = (1atm, 300K) velocity = np.zeros(shape=(dim,)) + 1.0 initializer = MixtureInitializer(dim=dim, nspecies=nspecies, massfractions=y0s, velocity=velocity) def boundary_solution(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state(initializer(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model, temperature_seed=state_minus.temperature) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=boundary_solution) } if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_cv = restart_data["cv"] tseed = restart_data["temperature_seed"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_cv = initializer(x_vec=nodes, eos=eos) tseed = 300.0 current_state = make_fluid_state(current_cv, gas_model, temperature_seed=tseed) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_status(component_errors, dv=None): from mirgecom.simutil import allsync status_msg = ( "------- errors=" + ", ".join("%.3g" % en for en in component_errors)) if ((dv is not None) and (not log_dependent)): temp = dv.temperature press = dv.pressure from grudge.op import nodal_min_loc, nodal_max_loc tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)), comm=comm, op=MPI.MIN) tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)), comm=comm, op=MPI.MAX) pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)), comm=comm, op=MPI.MIN) pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)), comm=comm, op=MPI.MAX) dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})" status_msg = status_msg + dv_status_msg if rank == 0: logger.info(status_msg) if rank == 0: logger.info(status_msg) def my_write_viz(step, t, state, dv, exact=None, resid=None): if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) if resid is None: resid = state - exact viz_fields = [("cv", state), ("dv", dv)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state, tseed): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "cv": state, "temperature_seed": tseed, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nparts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(dv, component_errors): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", dv.pressure) \ or check_range_local(discr, "vol", dv.pressure, 1e5, 1.1e5): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") exittol = .09 if max(component_errors) > exittol: health_error = True if rank == 0: logger.info("Solution diverged from exact soln.") return health_error def my_pre_step(step, t, dt, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) dv = fluid_state.dv try: exact = None component_errors = None if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) health_errors = global_reduce( my_health_check(dv, component_errors), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=cv, tseed=tseed) if do_viz: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) resid = state - exact my_write_viz(step=step, t=t, state=cv, dv=dv, exact=exact, resid=resid) if do_status: if component_errors is None: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) my_write_status(component_errors, dv=dv) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=cv, dv=dv) my_write_restart(step=step, t=t, state=cv, tseed=tseed) raise dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) tseed = fluid_state.temperature # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, cv, eos) logmgr.tick_after() return make_obj_array([fluid_state.cv, tseed]), dt def my_rhs(t, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) return make_obj_array( [euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model), 0*tseed]) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, advanced_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=make_obj_array([current_state.cv, current_state.temperature]), t=current_t, t_final=t_final, eos=eos, dim=dim) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") current_cv, tseed = advanced_state current_state = make_fluid_state(current_cv, gas_model, temperature_seed=tseed) final_dv = current_state.dv final_exact = initializer(x_vec=nodes, eos=eos, time=current_t) final_resid = current_state.cv - final_exact my_write_viz(step=current_step, t=current_t, state=current_cv, dv=final_dv, exact=final_exact, resid=final_resid) my_write_restart(step=current_step, t=current_t, state=current_state.cv, tseed=tseed) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
SSPRK22MethodBuilder, SSPRK33MethodBuilder, ) from leap.rk.imex import KennedyCarpenterIMEXARK4MethodBuilder from mirgecom.steppers import advance_state @pytest.mark.parametrize(("method", "method_order"), [ (ODE23MethodBuilder("y", use_high_order=False), 2), (ODE23MethodBuilder("y", use_high_order=True), 3), (ODE45MethodBuilder("y", use_high_order=False), 4), (ODE45MethodBuilder("y", use_high_order=True), 5), (ForwardEulerMethodBuilder("y"), 1), (MidpointMethodBuilder("y"), 2), (HeunsMethodBuilder("y"), 2), (RK3MethodBuilder("y"), 3), (RK4MethodBuilder("y"), 4), (RK5MethodBuilder("y"), 5), (LSRK4MethodBuilder("y"), 4), (KennedyCarpenterIMEXARK4MethodBuilder( "y", use_implicit=False, explicit_rhs_name="y"), 4), (SSPRK22MethodBuilder("y"), 2), (SSPRK33MethodBuilder("y"), 3), ]) def test_leapgen_integration_order(method, method_order): """Test that time integrators have correct order.""" def exact_soln(t): return np.exp(-t) def rhs(t, y): return -np.exp(-t)
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # Some discretization parameters dim = 2 nel_1d = 8 order = 1 # {{{ Time stepping control # This example runs only 3 steps by default (to keep CI ~short) # With the mixture defined below, equilibrium is achieved at ~40ms # To run to equlibrium, set t_final >= 40ms. # Time stepper selection if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step # Time loop control parameters current_step = 0 t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 constant_cfl = False # i.o frequencies nstatus = 1 nviz = 5 nhealth = 1 nrestart = 5 # }}} Time stepping control debug = False rst_path = "restart_data/" rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl") if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nproc rst_time = restart_data["t"] rst_step = restart_data["step"] rst_order = restart_data["order"] else: # generate the grid from scratch from meshmode.mesh.generation import generate_regular_rect_mesh box_ll = -0.005 box_ur = 0.005 generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. init_temperature = 1500.0 # Initial temperature hot enough to burn # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index("C2H4") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({init_temperature}, {one_atm}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = init_temperature, one_atm, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # }}} # {{{ Create Pyrometheus thermochemistry object & EOS # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and # generates a set of methods to calculate chemothermomechanical properties and # states for this particular mechanism. pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=init_temperature) # }}} # {{{ MIRGE-Com state initialization # Initialize the fluid/gas state with Cantera-consistent data: # (density, pressure, temperature, mass_fractions) print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}") velocity = np.zeros(shape=(dim, )) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=can_p, temperature=can_t, massfractions=can_y, velocity=velocity) my_boundary = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: my_boundary} if rst_filename: current_step = rst_step current_t = rst_time if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) if order == rst_order: current_state = restart_data["state"] else: rst_state = restart_data["state"] old_discr = EagerDGDiscretization(actx, local_mesh, order=rst_order, mpi_communicator=comm) from meshmode.discretization.connection import make_same_mesh_connection connection = make_same_mesh_connection( actx, discr.discr_from_dd("vol"), old_discr.discr_from_dd("vol")) current_state = connection(rst_state) else: # Set the current state from time 0 current_state = initializer(eos=eos, x_vec=nodes) # Inspection at physics debugging time if debug: print("Initial MIRGE-Com state:") print(f"{current_state=}") print(f"Initial DV pressure: {eos.pressure(current_state)}") print(f"Initial DV temperature: {eos.temperature(current_state)}") # }}} visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) # Cantera equilibrate calculates the expected end state @ chemical equilibrium # i.e. the expected state after all reactions cantera_soln.equilibrate("UV") eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY eq_pressure = cantera_soln.P # Report the expected final state to the user if rank == 0: logger.info(init_message) logger.info(f"Expected equilibrium state:" f" {eq_pressure=}, {eq_temperature=}," f" {eq_density=}, {eq_mass_fractions=}") def my_write_status(dt, cfl): status_msg = f"------ {dt=}" if constant_cfl else f"----- {cfl=}" if rank == 0: logger.info(status_msg) def my_write_viz(step, t, dt, state, ts_field=None, dv=None, production_rates=None, cfl=None): if dv is None: dv = eos.dependent_vars(state) if production_rates is None: production_rates = eos.get_production_rates(state) if ts_field is None: ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=state) viz_fields = [("cv", state), ("dv", dv), ("production_rates", production_rates), ("dt" if constant_cfl else "cfl", ts_field)] write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname == rst_filename: if rank == 0: logger.info("Skipping overwrite of restart file.") else: rst_data = { "local_mesh": local_mesh, "state": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nproc } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(dv): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", dv.pressure) \ or check_range_local(discr, "vol", dv.pressure, 1e5, 2.4e5): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") if check_range_local(discr, "vol", dv.temperature, 1.498e3, 1.52e3): health_error = True logger.info(f"{rank=}: Invalid temperature data found.") return health_error def my_get_timestep(t, dt, state): # richer interface to calculate {dt,cfl} returns node-local estimates t_remaining = max(0, t_final - t) if constant_cfl: from mirgecom.inviscid import get_inviscid_timestep ts_field = current_cfl * get_inviscid_timestep( discr, eos=eos, cv=state) from grudge.op import nodal_min dt = nodal_min(discr, "vol", ts_field) cfl = current_cfl else: from mirgecom.inviscid import get_inviscid_cfl ts_field = get_inviscid_cfl(discr, eos=eos, dt=dt, cv=state) from grudge.op import nodal_max cfl = nodal_max(discr, "vol", ts_field) return ts_field, cfl, min(t_remaining, dt) def my_pre_step(step, t, dt, state): try: dv = None if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: dv = eos.dependent_vars(state) from mirgecom.simutil import allsync health_errors = allsync(my_health_check(dv), comm, op=MPI.LOR) if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=state) if do_status: my_write_status(dt, cfl) if do_restart: my_write_restart(step=step, t=t, state=state) if do_viz: production_rates = eos.get_production_rates(state) if dv is None: dv = eos.dependent_vars(state) my_write_viz(step=step, t=t, dt=dt, state=state, dv=dv, production_rates=production_rates, ts_field=ts_field, cfl=cfl) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, dt=dt, state=state) my_write_restart(step=step, t=t, state=state) raise return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): return (euler_operator( discr, cv=state, time=t, boundaries=boundaries, eos=eos) + eos.get_species_source_terms(state)) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, eos, t_final, constant_cfl) current_step, current_t, current_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=current_state, t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_dv = eos.dependent_vars(current_state) final_dm = eos.get_production_rates(current_state) ts_field, cfl, dt = my_get_timestep(t=current_t, dt=current_dt, state=current_state) my_write_viz(step=current_step, t=current_t, dt=dt, state=current_state, dv=final_dv, production_rates=final_dm, ts_field=ts_field, cfl=cfl) my_write_status(dt=dt, cfl=cfl) my_write_restart(step=current_step, t=current_t, state=current_state) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def main(ctx_factory=cl.create_some_context, use_leap=False): """Drive the example.""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) logger = logging.getLogger(__name__) dim = 2 nel_1d = 16 order = 1 exittol = 2e-2 exittol = 100.0 t_final = 0.1 current_cfl = 1.0 vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) # vel[:dim] = 1.0 current_dt = .01 current_t = 0 eos = IdealSingleGas() initializer = Lump(dim=dim, center=orig, velocity=vel, rhoamp=0.0) casename = "pulse" boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} wall = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: wall} constant_cfl = False nstatus = 10 nviz = 10 rank = 0 checkpoint_t = current_t current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step box_ll = -0.5 box_ur = 0.5 from mpi4py import MPI comm = MPI.COMM_WORLD nproc = comm.Get_size() rank = comm.Get_rank() num_parts = nproc from meshmode.mesh.generation import generate_regular_rect_mesh if num_parts > 1: generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) else: local_mesh = generate_regular_rect_mesh(a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) global_nelements = local_mesh.nelements local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) uniform_state = initializer(nodes) acoustic_pulse = AcousticPulse(dim=dim, amplitude=1.0, width=.1, center=orig) current_state = acoustic_pulse(x_vec=nodes, cv=uniform_state, eos=eos) visualizer = make_visualizer(discr) initname = "pulse" eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return euler_operator(discr, cv=state, t=t, boundaries=boundaries, eos=eos) def my_checkpoint(step, t, dt, state): return sim_checkpoint(discr, visualizer, eos, cv=state, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final) except ExactSolutionMismatch as ex: current_step = ex.step current_t = ex.t current_state = ex.state # if current_t != checkpoint_t: if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally")
def main(ctx_factory=cl.create_some_context, casename="autoignition", use_leap=False, restart_step=None, restart_name=None): """Drive example.""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 2 nel_1d = 8 order = 1 # This example runs only 3 steps by default (to keep CI ~short) # With the mixture defined below, equilibrium is achieved at ~40ms # To run to equlibrium, set t_final >= 40ms. t_final = 1e-8 current_cfl = 1.0 velocity = np.zeros(shape=(dim, )) current_dt = 1e-9 current_t = 0 constant_cfl = False nstatus = 1 nviz = 5 nrestart = 5 rank = 0 checkpoint_t = current_t current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step box_ll = -0.005 box_ur = 0.005 error_state = False debug = False from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() restart_file_pattern = "{casename}-{step:04d}-{rank:04d}.pkl" restart_path = "restart_data/" if restart_step: if not restart_name: restart_name = casename rst_filename = (restart_path + restart_file_pattern.format( casename=restart_name, step=restart_step, rank=rank)) from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["nparts"] == nproc else: from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. init_temperature = 1500.0 # Initial temperature hot enough to burn # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index("C2H4") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({init_temperature}, {one_atm}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = init_temperature, one_atm, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # }}} # {{{ Create Pyrometheus thermochemistry object & EOS # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and # generates a set of methods to calculate chemothermomechanical properties and # states for this particular mechanism. pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=init_temperature) # }}} # {{{ MIRGE-Com state initialization # Initialize the fluid/gas state with Cantera-consistent data: # (density, pressure, temperature, mass_fractions) print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}") initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=can_p, temperature=can_t, massfractions=can_y, velocity=velocity) my_boundary = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: my_boundary} if restart_step: current_t = restart_data["t"] current_step = restart_step current_state = restart_data["state"] else: # Set the current state from time 0 current_state = initializer(eos=eos, x_vec=nodes, t=0) # Inspection at physics debugging time if debug: print("Initial MIRGE-Com state:") print(f"{current_state=}") print(f"Initial DV pressure: {eos.pressure(current_state)}") print(f"Initial DV temperature: {eos.temperature(current_state)}") # }}} visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) # Cantera equilibrate calculates the expected end state @ chemical equilibrium # i.e. the expected state after all reactions cantera_soln.equilibrate("UV") eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY eq_pressure = cantera_soln.P # Report the expected final state to the user if rank == 0: logger.info(init_message) logger.info(f"Expected equilibrium state:" f" {eq_pressure=}, {eq_temperature=}," f" {eq_density=}, {eq_mass_fractions=}") get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return (euler_operator( discr, cv=state, t=t, boundaries=boundaries, eos=eos) + eos.get_species_source_terms(state)) def my_checkpoint(step, t, dt, state): if check_step(step, nrestart) and step != restart_step: rst_filename = (restart_path + restart_file_pattern.format( casename=casename, step=step, rank=rank)) rst_data = { "local_mesh": local_mesh, "state": current_state, "t": t, "step": step, "global_nelements": global_nelements, "num_parts": nproc } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_filename, comm) # awful - computes potentially expensive viz quantities # regardless of whether it is time to viz reaction_rates = eos.get_production_rates(state) viz_fields = [("reaction_rates", reaction_rates)] return sim_checkpoint(discr, visualizer, eos, cv=state, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, constant_cfl=constant_cfl, comm=comm, viz_fields=viz_fields) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final) except ExactSolutionMismatch as ex: error_state = True current_step = ex.step current_t = ex.t current_state = ex.state if not check_step(current_step, nviz): # If final step not an output step if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: error_state = True if error_state: raise ValueError("Simulation did not complete successfully.")