コード例 #1
0
def do_cgp(gens):
    pop_size = 5

    ea = generational_ea(
        gens,
        pop_size,
        representation=cgp_representation,

        # Our fitness function will be to solve the XOR problem
        problem=xor_problem,
        pipeline=[
            ops.tournament_selection, ops.clone,
            cgp.cgp_mutate(cgp_decoder, expected_num_mutations=1),
            ops.evaluate,
            ops.pool(size=pop_size),
            probe.FitnessStatsCSVProbe(stream=sys.stdout)
        ] + cgp_visual_probes(modulo=10))

    list(ea)
コード例 #2
0
def evolve(runs, steps, env, rep, gens, pop_size, num_nodes, mutate_std,
           output, gui):
    """Evolve a controller using a Pitt-style rule system."""
    check_rep(rep)

    print(f"Loading environment '{env}'...")
    environment = gym.make(env)
    print(f"\tObservation space:\t{environment.observation_space}")
    print(f"\tAction space:     \t{environment.action_space}")

    with open(output, 'w') as genomes_file:
        if rep == 'pitt':
            representation = pitt_representation(environment,
                                                 num_rules=num_nodes)
        elif rep == 'neural':
            representation = neural_representation(environment,
                                                   num_hidden_nodes=num_nodes)

        probes = get_probes(genomes_file, environment, rep)

        with Client() as dask_client:
            ea = generational_ea(
                generations=gens,
                pop_size=pop_size,
                # Solve a problem that executes agents in the
                # environment and obtains fitness from it
                problem=problems.EnvironmentProblem(runs, steps, environment,
                                                    'reward', gui),
                representation=representation,

                # The operator pipeline.
                pipeline=[
                    ops.tournament_selection,
                    ops.clone,
                    mutate_gaussian(std=mutate_std, hard_bounds=(-1, 1)),
                    ops.evaluate,
                    ops.pool(size=pop_size),
                    #synchronous.eval_pool(client=dask_client, size=pop_size),
                    *probes  # Inserting all the probes at the end
                ])
            list(ea)
コード例 #3
0
ファイル: cgp.py プロジェクト: nicrox89/LEAP
def cgp_cmd(gens):
    """Use an evolutionary CGP approach to solve the XOR function."""
    pop_size = 5

    ea = generational_ea(gens, pop_size, 

            representation=cgp_representation,

            # Our fitness function will be to solve the XOR problem
            problem=xor_problem,

            pipeline=[
                ops.tournament_selection,
                ops.clone,
                cgp.cgp_mutate(cgp_decoder),
                ops.evaluate,
                ops.pool(size=pop_size),
                probe.FitnessStatsCSVProbe(context.context, stream=sys.stdout)
            ] + cgp_visual_probes(modulo=10)
    )

    list(ea)
コード例 #4
0
ファイル: simple.py プロジェクト: nicrox89/LEAP
def ea_solve(function, bounds, generations=100, pop_size=2,
             mutation_std=1.0, maximize=False, viz=False, viz_ylim=(0, 1)):
    """Provides a simple, top-level interfact that optimizes a real-valued
    function using a simple generational EA.

    :param function: the function to optimize; should take lists of real
        numbers as input and return a float fitness value

    :param [(float, float)] bounds: a list of (min, max) bounds to define the
        search space

    :param int generations: the number of generations to run for
    :param int pop_size: the population size
    :param float mutation_std: the width of the mutation distribution
    :param bool maximize: whether to maximize the function (else minimize)
    :param bool viz: whether to display a live best-of-generation plot

    :param (float, float) viz_ylim: initial bounds to use of the plots
        vertical axis

    >>> from leap_ec import simple
    >>> ea_solve(sum, bounds=[(0, 1)]*5) # doctest:+ELLIPSIS
    generation, bsf
    0, ...
    1, ...
    ...
    100, ...
    [..., ..., ..., ..., ...]
    """

    pipeline = [
        ops.tournament_selection,
        ops.clone,
        mutate_gaussian(std=mutation_std),
        ops.uniform_crossover(p_swap=0.4),
        ops.evaluate,
        ops.pool(size=pop_size)
    ]

    if viz:
        plot_probe = probe.PopulationPlotProbe(
            context, ylim=viz_ylim, ax=plt.gca())
        pipeline.append(plot_probe)

    ea = generational_ea(generations=generations, pop_size=pop_size,
                         problem=FunctionProblem(function, maximize),

                         representation=Representation(
                             individual_cls=Individual,
                             decoder=IdentityDecoder(),
                             initialize=create_real_vector(bounds=bounds)
                         ),

                         pipeline=pipeline)

    best_genome = None
    print('generation, bsf')
    for g, ind in ea:
        print(f"{g}, {ind.fitness}")
        best_genome = ind.genome

    return best_genome
コード例 #5
0
    ea = generational_ea(max_generations=generations,pop_size=pop_size,
                             problem=problem,  # Fitness function

                             # Stopping condition: we stop when fitness or diversity drops below a threshold
                             stop=lambda pop: (max(pop).fitness < fitness_threshold)
                                              or (probe.pairwise_squared_distance_metric(pop) < diversity_threshold),

                             # Representation
                             representation=Representation(
                                 # Initialize a population of integer-vector genomes
                                 initialize=create_real_vector(
                                     bounds=[problem.bounds] * l)
                             ),

                             # Operator pipeline
                             pipeline=[
                                 ops.tournament_selection(k=2),
                                 ops.clone,
                                 # Apply binomial mutation: this is a lot like
                                 # additive Gaussian mutation, but adds an integer
                                 # value to each gene
                                 mutate_gaussian(std=0.2, hard_bounds=[problem.bounds]*l,
                                                 expected_num_mutations=1),
                                 ops.evaluate,
                                 ops.pool(size=pop_size),

                                 # Some visualization probes so we can watch what happens
                                 probe.CartesianPhenotypePlotProbe(
                                        xlim=problem.bounds,
                                        ylim=problem.bounds,
                                        contours=problem),
                                 probe.FitnessPlotProbe(),

                                 probe.PopulationMetricsPlotProbe(
                                     metrics=[ probe.pairwise_squared_distance_metric ],
                                     title='Population Diversity'),

                                 probe.FitnessStatsCSVProbe(stream=sys.stdout)
                             ]
                        )
コード例 #6
0
        ea = generational_ea(
            max_generations=generations,
            pop_size=pop_size,
            # Solve a problem that executes agents in the
            # environment and obtains fitness from it
            problem=problems.EnvironmentProblem(runs_per_fitness_eval,
                                                simulation_steps,
                                                environment,
                                                'reward',
                                                gui=gui),
            representation=Representation(
                initialize=decoder.initializer(num_rules), decoder=decoder),

            # The operator pipeline.
            pipeline=[
                ops.tournament_selection,
                ops.clone,
                decoder.mutator(condition_mutator=genome_mutate_gaussian(
                    std=mutate_std,
                    hard_bounds=decoder.condition_bounds,
                    expected_num_mutations=1 / num_rules),
                                action_mutator=individual_mutate_randint(
                                    bounds=decoder.action_bounds,
                                    probability=1.0)),
                ops.evaluate,
                ops.pool(size=pop_size),
                *build_probes(genomes_file,
                              decoder)  # Inserting all the probes at the end
            ])
        list(ea)
コード例 #7
0
ファイル: simple.py プロジェクト: AureumChaos/LEAP
def ea_solve(function,
             bounds,
             generations=100,
             pop_size=cpu_count(),
             mutation_std=1.0,
             maximize=False,
             viz=False,
             viz_ylim=(0, 1),
             hard_bounds=True,
             dask_client=None):
    """Provides a simple, top-level interfact that optimizes a real-valued
    function using a simple generational EA.

    :param function: the function to optimize; should take lists of real
        numbers as input and return a float fitness value

    :param [(float, float)] bounds: a list of (min, max) bounds to define the
        search space

    :param int generations: the number of generations to run for
    :param int pop_size: the population size
    :param float mutation_std: the width of the mutation distribution
    :param bool maximize: whether to maximize the function (else minimize)
    :param bool viz: whether to display a live best-of-generation plot
    :param bool hard_bounds: if True, bounds are enforced at all times during
        evolution; otherwise they are only used to initialize the population.

    :param (float, float) viz_ylim: initial bounds to use of the plots
        vertical axis

    :param dask_client: is optional dask Client for enable parallel evaluations

    The basic call includes instrumentation that prints the best-so-far fitness
    value of each generation to stdout:

    >>> from leap_ec.simple import ea_solve
    >>> ea_solve(sum, bounds=[(0, 1)]*5) # doctest:+ELLIPSIS
    generation, bsf
    0, ...
    1, ...
    ...
    100, ...
    array([..., ..., ..., ..., ...])

    When `viz=True`, a live BSF plot will also display:

    >>> ea_solve(sum, bounds=[(0, 1)]*5, viz=True) # doctest:+ELLIPSIS
    generation, bsf
    0, ...
    1, ...
    ...
    100, ...
    array([..., ..., ..., ..., ...])

    .. plot::

        from leap_ec.simple import ea_solve
        ea_solve(sum, bounds=[(0, 1)]*5, viz=True)

    """

    if hard_bounds:
        mutation_op = mutate_gaussian(std=mutation_std,
                                      hard_bounds=bounds,
                                      expected_num_mutations='isotropic')
    else:
        mutation_op = mutate_gaussian(std=mutation_std,
                                      expected_num_mutations='isotropic')

    pipeline = [
        ops.tournament_selection,
        ops.clone,
        mutation_op,
        ops.uniform_crossover(p_swap=0.2),
    ]

    # If a dask client is given, then use the synchronous (map/reduce) parallel
    # evaluation of individuals; else, revert to serial evaluations.
    if dask_client:
        pipeline.append(
            synchronous.eval_pool(client=dask_client, size=pop_size))
    else:
        pipeline.extend([ops.evaluate, ops.pool(size=pop_size)])

    if viz:
        plot_probe = probe.FitnessPlotProbe(ylim=viz_ylim, ax=plt.gca())
        pipeline.append(plot_probe)

    ea = generational_ea(max_generations=generations,
                         pop_size=pop_size,
                         problem=FunctionProblem(function, maximize),
                         representation=Representation(
                             individual_cls=DistributedIndividual,
                             initialize=create_real_vector(bounds=bounds)),
                         pipeline=pipeline)

    best_genome = None
    print('generation, bsf')
    for g, ind in ea:
        print(f"{g}, {ind.fitness}")
        best_genome = ind.genome

    return best_genome
コード例 #8
0
    with open('./genomes.csv', 'w') as genomes_file:

        ea = generational_ea(
            max_generations=generations,
            pop_size=pop_size,
            # Solve a problem that executes agents in the
            # environment and obtains fitness from it
            problem=problems.EnvironmentProblem(runs_per_fitness_eval,
                                                simulation_steps,
                                                environment,
                                                'reward',
                                                gui=gui),
            representation=Representation(initialize=create_real_vector(
                bounds=([[-1, 1]] * decoder.wrapped_decoder.length)),
                                          decoder=decoder),

            # The operator pipeline.
            pipeline=[
                ops.tournament_selection,
                ops.clone,
                mutate_gaussian(std=mutate_std,
                                hard_bounds=(-1, 1),
                                expected_num_mutations=1),
                ops.evaluate,
                ops.pool(size=pop_size),
                *build_probes(
                    genomes_file)  # Inserting all the probes at the end
            ])
        list(ea)
コード例 #9
0
    ea = generational_ea(max_generations=generations,pop_size=pop_size,
                             problem=problem,  # Fitness function

                             # Representation
                             representation=Representation(
                                 # Initialize a population of integer-vector genomes
                                 initialize=create_real_vector(
                                     bounds=[problem.bounds] * l)
                             ),

                             # Operator pipeline
                             pipeline=[
                                 ops.tournament_selection(k=2),
                                 ops.clone,

                                 # Apply Gaussian mutation
                                 mutate_gaussian(std=1.5, hard_bounds=[problem.bounds]*l,
                                                 expected_num_mutations=1),
                                 ops.evaluate,
                                 ops.pool(size=pop_size),

                                 # Some visualization probes so we can watch what happens
                                 probe.CartesianPhenotypePlotProbe(
                                        xlim=problem.bounds,
                                        ylim=problem.bounds,
                                        contours=problem),
                                 probe.FitnessPlotProbe(),

                                 # Collect diversity metrics along with the standard CSV columns
                                 probe.FitnessStatsCSVProbe(stream=sys.stdout,
                                    extra_metrics={
                                        'diversity_pairwise_dist': probe.pairwise_squared_distance_metric,
                                        'diversity_sum_variance': probe.sum_of_variances_metric,
                                        'diversity_num_fixated': probe.num_fixated_metric
                                        })
                             ]
                        )
コード例 #10
0
ファイル: generational.py プロジェクト: nicrox89/LEAP
from leap_ec.binary_rep.ops import mutate_bitflip

pop_size = 5
ea = generational_ea(
    generations=10,
    pop_size=pop_size,

    # Solve a MaxOnes Boolean optimization problem
    problem=problems.MaxOnes(),
    representation=representation.Representation(
        # Genotype and phenotype are the same for this task
        decoder=decoder.IdentityDecoder(),
        # Initial genomes are random binary sequences
        initialize=initializers.create_binary_sequence(length=10)),

    # The operator pipeline
    pipeline=[
        ops.tournament_selection,
        # Select parents via tournament_selection selection
        ops.clone,  # Copy them (just to be safe)
        # Basic mutation: defaults to a 1/L mutation rate
        mutate_bitflip,
        # Crossover with a 40% chance of swapping each gene
        ops.uniform_crossover(p_swap=0.4),
        ops.evaluate,  # Evaluate fitness
        # Collect offspring into a new population
        ops.pool(size=pop_size)
    ])

print('Generation, Best_Individual')
for i, best in ea:
コード例 #11
0
    # The Evolutionarly Algorithm
    ##############################
    ea = generational_ea(max_generations=generations, pop_size=pop_size,
                            problem=problem,  # Fitness function
                            
                            # By default, the initial population would be evaluated one-at-a-time.
                            # Passing group_evaluate into init_evaluate evaluates the population in batches.
                            init_evaluate=ops.grouped_evaluate(problem=problem, max_individuals_per_chunk=max_individuals_per_chunk),

                            # Representation
                            representation=Representation(
                                # Initialize a population of integer-vector genomes
                                initialize=create_real_vector(
                                    bounds=[problem.bounds] * num_genes)
                            ),

                            # Operator pipeline
                            pipeline=[
                                ops.tournament_selection(k=2),
                                ops.clone,  # Copying individuals before we change them, just to be safe
                                mutate_gaussian(std=0.2, hard_bounds=[problem.bounds]*num_genes,
                                                expected_num_mutations=1),
                                ops.pool(size=pop_size),
                                # Here again, we use grouped_evaluate to send chunks of individuals to the ExternalProcessProblem.
                                ops.grouped_evaluate(problem=problem, max_individuals_per_chunk=max_individuals_per_chunk),
                                # Print fitness statistics to stdout at each genration
                                probe.FitnessStatsCSVProbe(stream=sys.stdout)
                            ] + (viz_probes if plots else [])
                        )

    best_inds = list(ea)