コード例 #1
0
ファイル: test_selection.py プロジェクト: AureumChaos/LEAP
def test_tournament_selection2():
    """If there are just two individuals in the population, and we set select_worst=True,
    then binary tournament selection will select the worse one with 75% probability."""
    # Make a population where binary tournament_selection has an obvious
    # reproducible choice
    pop = [
        Individual(np.array([0, 0, 0]), problem=MaxOnes()),
        Individual(np.array([1, 1, 1]), problem=MaxOnes())
    ]
    # Assign a unique identifier to each individual
    pop[0].id = 0
    pop[1].id = 1

    # We first need to evaluate all the individuals so that
    # selection has fitnesses to compare
    pop = Individual.evaluate_population(pop)
    selected = ops.tournament_selection(pop, select_worst=True)

    N = 1000
    p_thresh = 0.1
    observed_dist = statistical_helpers.collect_distribution(
        lambda: next(selected).id, samples=N)
    expected_dist = {pop[0].id: 0.75 * N, pop[1].id: 0.25 * N}
    print(f"Observed: {observed_dist}")
    print(f"Expected: {expected_dist}")
    assert (statistical_helpers.stochastic_equals(expected_dist,
                                                  observed_dist,
                                                  p=p_thresh))
コード例 #2
0
ファイル: test_selection.py プロジェクト: AureumChaos/LEAP
def test_tournament_selection_indices():
    """If an empty list is provided to tournament selection, it should be populated with
    the index of the selected individual.
    
    If we select a second individual, the list should be cleared and populated with the 
    index of the second individual."""
    pop = test_population

    indices = []
    op = ops.tournament_selection(indices=indices)

    # Select an individual
    s = next(op(pop))
    # Ensure the returned index is correct
    assert (len(indices) == 1)
    idx = indices[0]
    assert (idx >= 0)
    assert (idx < len(pop))
    assert (pop[idx] is s)

    # Select another individual
    s = next(op(pop))
    # Ensure the returned index is correct
    assert (len(indices) == 1)
    idx = indices[0]
    assert (idx >= 0)
    assert (idx < len(pop))
    assert (pop[idx] is s)
コード例 #3
0
def test_tournament_selection():
    """ This simple binary tournament_selection selection """
    # Make a population where binary tournament_selection has an obvious reproducible choice
    pop = [
        Individual([0, 0, 0], decoder=IdentityDecoder(), problem=MaxOnes()),
        Individual([1, 1, 1], decoder=IdentityDecoder(), problem=MaxOnes())
    ]

    # We first need to evaluate all the individuals so that truncation selection has fitnesses to compare
    pop = Individual.evaluate_population(pop)

    best = next(ops.tournament_selection(pop))
    pass
コード例 #4
0
                             problem=problem,  # Fitness function

                             # Stopping condition: we stop when fitness or diversity drops below a threshold
                             stop=lambda pop: (max(pop).fitness < fitness_threshold)
                                              or (probe.pairwise_squared_distance_metric(pop) < diversity_threshold),

                             # Representation
                             representation=Representation(
                                 # Initialize a population of integer-vector genomes
                                 initialize=create_real_vector(
                                     bounds=[problem.bounds] * l)
                             ),

                             # Operator pipeline
                             pipeline=[
                                 ops.tournament_selection(k=2),
                                 ops.clone,
                                 # Apply binomial mutation: this is a lot like
                                 # additive Gaussian mutation, but adds an integer
                                 # value to each gene
                                 mutate_gaussian(std=0.2, hard_bounds=[problem.bounds]*l,
                                                 expected_num_mutations=1),
                                 ops.evaluate,
                                 ops.pool(size=pop_size),

                                 # Some visualization probes so we can watch what happens
                                 probe.CartesianPhenotypePlotProbe(
                                        xlim=problem.bounds,
                                        ylim=problem.bounds,
                                        contours=problem),
                                 probe.FitnessPlotProbe(),