def demo(): parser = argparse.ArgumentParser() parser.add_argument('-f', action='store', required=True, dest='trainfile', help='file for train') parser.add_argument('-w', action='store', required=True, dest='weightfile', help='weight file for train') inputs = parser.parse_args() writeTrainWeights(inputs.weightfile) pointNum, pat = readfile(learnParameters.expandfeature(inputs.trainfile)) print pat print('file read over ,the train has began please wait for a momment') n = NN(pointNum, pointNum, 1) #for i in xrange(100): f_wfile = open(inputs.weightfile, 'r') for line in f_wfile: line = line.strip('\n') line = line.split(':') iterations = int(line[0]) N_value = float(line[1]) M_value = float(line[2]) print('iterations=%d,N=%f,M=%f' % (iterations, N_value, M_value)) n.train(pat, iterations, N_value, M_value) n.weights() print('Next paratermeters........') f_wfile.close()
def demo(): parser=argparse.ArgumentParser() parser.add_argument('-f', action='store', required=True, dest='trainfile', help='file for train') parser.add_argument('-w', action='store', required=True, dest='weightfile', help='weight file for train') inputs=parser.parse_args() writeTrainWeights(inputs.weightfile) pointNum,pat=readfile(learnParameters.expandfeature(inputs.trainfile)) print pat print('file read over ,the train has began please wait for a momment') n=NN(pointNum,pointNum,1) #for i in xrange(100): f_wfile=open(inputs.weightfile,'r') for line in f_wfile: line=line.strip('\n') line=line.split(':') iterations=int(line[0]) N_value=float(line[1]) M_value=float(line[2]) print('iterations=%d,N=%f,M=%f'%(iterations,N_value,M_value)) n.train(pat,iterations,N_value,M_value) n.weights() print('Next paratermeters........') f_wfile.close()
def psolearn(trainfile, N_value, M_value): pointNum, pat = readfile(learnParameters.expandfeature(trainfile)) print('file read over ,the train has began please wait for a momment') n = NN(pointNum, pointNum, 1) #for i in xrange(100): iterations = 1000 value = n.train(pat, iterations, N_value, M_value) print('N_value:%f,M_value:%f' % (N_value, M_value)) #n.weights() return value
def psolearn(trainfile,N_value,M_value): pointNum,pat=readfile(learnParameters.expandfeature(trainfile)) print('file read over ,the train has began please wait for a momment') n=NN(pointNum,pointNum,1) #for i in xrange(100): iterations=1000 value=n.train(pat,iterations,N_value,M_value) print ('N_value:%f,M_value:%f'%(N_value,M_value)) #n.weights() return value