def run_classifier(out_folder, trend_probs, referrers, y, train, test): F = referrers #static features etree = create_grid_search('lr', n_jobs = 1) y_pred = trend_probs[test].argmax(axis=1) save_results(out_folder, 'tl-base-lr', y_pred, y[test]) aux = clone(etree) aux.fit(F[train], y[train]) y_pred = aux.predict(F[test]) save_results(out_folder, 'tree-feats', y_pred, y[test]) aux = clone(etree) aux.fit(trend_probs[train], y[train]) y_pred = aux.predict(trend_probs[test]) save_results(out_folder, 'tree-probs', y_pred, y[test]) C = np.hstack((F, trend_probs)) aux = clone(etree) aux.fit(C[train], y[train]) y_pred = aux.predict(C[test]) save_results(out_folder, 'meta-combine', y_pred, y[test]) #stack_clf = stacking.Stacking(3, [etree], 'tree') #stack_clf.fit(F[train], y[train], trend_probs[train]) #y_pred = stack_clf.predict(F[test], trend_probs[test]) #save_results(out_folder, 'meta-stack-tree', y_pred) stack_clf = stacking.Stacking(3, [etree], 'linear') stack_clf.fit(F[train], y[train], trend_probs[train]) y_pred = stack_clf.predict(F[test], trend_probs[test]) save_results(out_folder, 'meta-stack-linear', y_pred, y[test])
def __init__(self): self.model = etree = create_grid_search('extra_trees', n_jobs = 1)