instances = np.apply_along_axis(utils.add_instances, category_column=CATEGORY_COLUMN, instance_column=INSTANCE_COLUMN, axis=1, arr=selected_data) selected_data[:, CATEGORY_COLUMN] = instances # Bring class labels to the range within the number of the classes. fitted_class_labels = utils.fit_class_labels( selected_data[:, CATEGORY_COLUMN], args.num_classes) selected_data[:, CATEGORY_COLUMN] = fitted_class_labels train_data = selected_data[np.in1d(selected_data[:, SESSION_COLUMN], TRAIN_SESSIONS)] train_data = utils.reduce_number_of_frames(train_data, FACTOR_FRAMES) train_data = utils.select_frames_per_session( train_data, NUMBER_FRAMES, FACTOR_FRAMES, CATEGORY_COLUMN, SESSION_COLUMN, IMAGE_NAME_COLUMN, TRAIN_SESSIONS) test_data = selected_data[np.in1d(selected_data[:, SESSION_COLUMN], TEST_SESSIONS)] # ------------------------------------ Batch learning--------------------------------------------------------------- if BATCH_LEARNING: learning.batch_learning(train_data, test_data, args) # ------------------------------------ Iterative learning ---------------------------------------------------------- if ITERATIVE_LEARNING: learning.iterative_learning(train_data, test_data, args, CATEGORY_COLUMN)
# frames is 8. In this case it will be reduced to 4 and 2, respectively. # ------------------------------------ Initialization -------------------------------------------------------------- rgwr = GammaGWR() utils = Utilities() learning = Learning() args = utils.parse_arguments() # Get data. original_data = utils.load_data(args.dataset).values original_data_normalized = utils.normalize_data(original_data, DATA_DIMENSION) train_data = original_data_normalized[np.in1d( original_data_normalized[:, SESSION_COLUMN], TRAIN_SESSIONS)] train_data = utils.reduce_number_of_frames(train_data, FACTOR_FRAMES) test_data = original_data_normalized[np.in1d( original_data_normalized[:, SESSION_COLUMN], TEST_SESSIONS)] # ------------------------------------ Batch learning--------------------------------------------------------------- if BATCH_LEARNING: learning.batch_learning(train_data, test_data, args) # ------------------------------------ Iterative learning ---------------------------------------------------------- if ITERATIVE_LEARNING: learning.iterative_learning(train_data, test_data, args, INSTANCE_COLUMN)