コード例 #1
0
ファイル: DQN.py プロジェクト: hearthstoneboss/learningALE
    def __init__(self,
                 skip_frame,
                 num_actions,
                 load=None,
                 random_state=np.random.RandomState()):
        super().__init__()

        rand_vals = (
            1, 0.1, 1000000
        )  # starting at 1 anneal eGreedy policy to 0.1 over 1,000,000 actions
        self.action_handler = ActionHandler(rand_vals)

        self.minimum_replay_size = 100
        self.exp_handler = DataSet(84,
                                   84,
                                   random_state,
                                   max_steps=1000000,
                                   phi_length=skip_frame)
        self.cnn = CNN((None, skip_frame, 84, 84), num_actions)

        self.skip_frame = skip_frame
        self.discount = .95
        self.costList = list()
        self.state_tm1 = None

        if load is not None:
            self.cnn.load(load)
コード例 #2
0
ファイル: DQN.py プロジェクト: hearthstoneboss/learningALE
class DQNTester:
    def __init__(self, skip_frame, num_actions, load, rand_val=0.05):
        rand_vals = (rand_val, rand_val, 2)
        self.action_handler = ActionHandler(rand_vals)
        self.cnn = CNN((None, skip_frame, 84, 84), num_actions, 1)
        self.cnn.load(load)
        self.q_vals = list()
        self.skip_frame = skip_frame
        self.exp_handler = DataSet(84,
                                   84,
                                   np.random.RandomState(),
                                   phi_length=skip_frame)
        self.skip_frame = skip_frame
        self.state_tm1 = np.zeros((84, 84), dtype=np.uint8)

    def get_game_action(self):
        q_vals = self.cnn.get_output(
            self.exp_handler.phi(self.state_tm1).reshape(
                1, self.skip_frame, 84, 84))[0]
        self.q_vals.append(q_vals)
        return self.action_handler.action_vect_to_game_action(q_vals)

    def frames_processed(self, frames, action_performed, reward):
        game_action = self.action_handler.game_action_to_action_ind(
            action_performed)
        self.exp_handler.add_sample(self.state_tm1, game_action, reward, False)
        self.state_tm1 = frames[-1]

    def set_legal_actions(self, legal_actions):
        self.action_handler.set_legal_actions(legal_actions)
コード例 #3
0
ファイル: DQN.py プロジェクト: hearthstoneboss/learningALE
 def __init__(self, skip_frame, num_actions, load, rand_val=0.05):
     rand_vals = (rand_val, rand_val, 2)
     self.action_handler = ActionHandler(rand_vals)
     self.cnn = CNN((None, skip_frame, 84, 84), num_actions, 1)
     self.cnn.load(load)
     self.q_vals = list()
     self.skip_frame = skip_frame
     self.exp_handler = DataSet(84,
                                84,
                                np.random.RandomState(),
                                phi_length=skip_frame)
     self.skip_frame = skip_frame
     self.state_tm1 = np.zeros((84, 84), dtype=np.uint8)
コード例 #4
0
ファイル: DQN.py プロジェクト: islamelnabarawy/learningALE
 def __init__(self, skip_frame, num_actions, load, rand_val=0.05):
     rand_vals = (rand_val, rand_val, 2)
     self.action_handler = ActionHandler(ActionPolicy.eGreedy, rand_vals)
     self.cnn = CNN((None, skip_frame, 84, 84), num_actions, 1)
     self.cnn.load(load)
     self.q_vals = list()
     self.skip_frame = skip_frame
     self.exp_handler = DataSet(84, 84, np.random.RandomState(), phi_length=skip_frame)
     self.skip_frame = skip_frame
     self.state_tm1 = np.zeros((84, 84), dtype=np.uint8)
コード例 #5
0
class PrioritizedExperienceLearner(learner):
    def __init__(self, skip_frame, num_actions, load=None):
        super().__init__()

        rand_vals = (1, 0.1, 10000 / skip_frame)  # starting at 1 anneal eGreedy policy to 0.1 over 1,000,000/skip_frame
        self.action_handler = ActionHandler(ActionPolicy.eGreedy, rand_vals)

        self.exp_handler = PrioritizedExperienceHandler(1000000 / skip_frame)
        self.train_handler = TrainHandler(32, num_actions)
        self.cnn = CNN((None, skip_frame, 86, 80), num_actions, 0.1)

        self.discount = 0.99

        if load is not None:
            self.cnn.load(load)

    def frames_processed(self, frames, action_performed, reward):
        self.exp_handler.add_experience(frames, self.action_handler.game_action_to_action_ind(action_performed), reward)
        self.train_handler.train_prioritized(self.exp_handler, 0.99, self.cnn)
        self.action_handler.anneal()

    def plot_tree(self):
        self.exp_handler.tree.plot()

    def get_action(self, game_input):
        return self.cnn.get_output(game_input)[0]

    def game_over(self):
        self.exp_handler.trim()  # trim experience replay of learner
        self.exp_handler.add_terminal()  # adds a terminal

    def get_game_action(self, game_input):
        return self.action_handler.action_vect_to_game_action(self.get_action(game_input))

    def set_legal_actions(self, legal_actions):
        self.action_handler.set_legal_actions(legal_actions)

    def save(self, file):
        self.cnn.save(file)

    def get_cost_list(self):
        return self.train_handler.costList
コード例 #6
0
    def __init__(self, skip_frame, num_actions):
        rand_vals = (
            1, 0.1, 1000000
        )  # starting at 1 anneal eGreedy policy to 0.1 over 1,000,000 actions
        self.action_handler = ActionHandler(ActionPolicy.eGreedy, rand_vals)

        self.minimum_replay_size = 100
        self.exp_handler = DataSet(84,
                                   84,
                                   np.random.RandomState(),
                                   max_steps=1000000,
                                   phi_length=skip_frame)
        self.cnn = CNN((None, skip_frame, 84, 84), num_actions)

        self.skip_frame = skip_frame
        self.costList = list()
        self.state_tm1 = None

        # novelty setup
        self.frame_table = dict()
        self.new_novel_states = 0
コード例 #7
0
    def __init__(self, skip_frame, num_actions, load=None):
        super().__init__()

        rand_vals = (1, 0.1, 10000 / skip_frame)  # starting at 1 anneal eGreedy policy to 0.1 over 1,000,000/skip_frame
        self.action_handler = ActionHandler(ActionPolicy.eGreedy, rand_vals)

        self.exp_handler = PrioritizedExperienceHandler(1000000 / skip_frame)
        self.train_handler = TrainHandler(32, num_actions)
        self.cnn = CNN((None, skip_frame, 86, 80), num_actions, 0.1)

        self.discount = 0.99

        if load is not None:
            self.cnn.load(load)
コード例 #8
0
ファイル: DQN.py プロジェクト: islamelnabarawy/learningALE
class DQNTester:
    def __init__(self, skip_frame, num_actions, load, rand_val=0.05):
        rand_vals = (rand_val, rand_val, 2)
        self.action_handler = ActionHandler(ActionPolicy.eGreedy, rand_vals)
        self.cnn = CNN((None, skip_frame, 84, 84), num_actions, 1)
        self.cnn.load(load)
        self.q_vals = list()
        self.skip_frame = skip_frame
        self.exp_handler = DataSet(84, 84, np.random.RandomState(), phi_length=skip_frame)
        self.skip_frame = skip_frame
        self.state_tm1 = np.zeros((84, 84), dtype=np.uint8)

    def get_game_action(self):
        q_vals = self.cnn.get_output(self.exp_handler.phi(self.state_tm1).reshape(1, self.skip_frame, 84, 84))[0]
        self.q_vals.append(q_vals)
        return self.action_handler.action_vect_to_game_action(q_vals)

    def frames_processed(self, frames, action_performed, reward):
        game_action = self.action_handler.game_action_to_action_ind(action_performed)
        self.exp_handler.add_sample(self.state_tm1, game_action, reward, False)
        self.state_tm1 = frames[-1]

    def set_legal_actions(self, legal_actions):
        self.action_handler.set_legal_actions(legal_actions)
コード例 #9
0
ファイル: DQN.py プロジェクト: islamelnabarawy/learningALE
    def __init__(self, skip_frame, num_actions, load=None, random_state=np.random.RandomState()):
        super().__init__()

        rand_vals = (1, 0.1, 1000000)  # starting at 1 anneal eGreedy policy to 0.1 over 1,000,000 actions
        self.action_handler = ActionHandler(ActionPolicy.eGreedy, rand_vals)

        self.minimum_replay_size = 100
        self.exp_handler = DataSet(84, 84, random_state, max_steps=1000000, phi_length=skip_frame)
        self.cnn = CNN((None, skip_frame, 84, 84), num_actions)

        self.skip_frame = skip_frame
        self.discount = .95
        self.costList = list()
        self.state_tm1 = None

        if load is not None:
            self.cnn.load(load)
コード例 #10
0
ファイル: DQN.py プロジェクト: islamelnabarawy/learningALE
class DQNLearner(learner):
    def __init__(self, skip_frame, num_actions, load=None, random_state=np.random.RandomState()):
        super().__init__()

        rand_vals = (1, 0.1, 1000000)  # starting at 1 anneal eGreedy policy to 0.1 over 1,000,000 actions
        self.action_handler = ActionHandler(ActionPolicy.eGreedy, rand_vals)

        self.minimum_replay_size = 100
        self.exp_handler = DataSet(84, 84, random_state, max_steps=1000000, phi_length=skip_frame)
        self.cnn = CNN((None, skip_frame, 84, 84), num_actions)

        self.skip_frame = skip_frame
        self.discount = .95
        self.costList = list()
        self.state_tm1 = None

        if load is not None:
            self.cnn.load(load)

    def frames_processed(self, frames, action_performed, reward):
        game_action = self.action_handler.game_action_to_action_ind(action_performed)
        if self.state_tm1 is not None:
            self.exp_handler.add_sample(self.state_tm1, game_action, reward, False)

        # generate minibatch data
        if self.exp_handler.size > self.minimum_replay_size:
            states, actions, rewards, state_tp1s, terminal = self.exp_handler.random_batch(32)
            cost = self.cnn.train(states, actions, rewards, state_tp1s, terminal)
            self.costList.append(cost)
            self.action_handler.anneal()

        self.state_tm1 = frames[-1]

    def get_action(self, processed_screens):
        return self.cnn.get_output(processed_screens)[0]

    def game_over(self):
        self.exp_handler.add_terminal()  # adds a terminal

    def get_game_action(self):
        return self.action_handler.action_vect_to_game_action(
            self.get_action(self.exp_handler.phi(self.state_tm1).reshape(1, self.skip_frame, 84, 84)))

    def set_legal_actions(self, legal_actions):
        self.action_handler.set_legal_actions(legal_actions)

    def save(self, file):
        self.cnn.save(file)

    def get_cost_list(self):
        return self.costList
コード例 #11
0
class NoveltyLearner():
    def __init__(self, skip_frame, num_actions):
        rand_vals = (
            1, 0.1, 1000000
        )  # starting at 1 anneal eGreedy policy to 0.1 over 1,000,000 actions
        self.action_handler = ActionHandler(ActionPolicy.eGreedy, rand_vals)

        self.minimum_replay_size = 100
        self.exp_handler = DataSet(84,
                                   84,
                                   np.random.RandomState(),
                                   max_steps=1000000,
                                   phi_length=skip_frame)
        self.cnn = CNN((None, skip_frame, 84, 84), num_actions)

        self.skip_frame = skip_frame
        self.costList = list()
        self.state_tm1 = None

        # novelty setup
        self.frame_table = dict()
        self.new_novel_states = 0

    def frames_processed(self, frames, action_performed, reward):
        # novelty reward
        for frame in frames:
            frame[frame > 0] = 1
            frame_hash = hash(frame.data.tobytes())

            # if already in table
            if frame_hash in self.frame_table:
                novelty_reward = 0
                self.frame_table[frame_hash] += 1
            # new state
            else:
                novelty_reward = 1
                self.frame_table[frame_hash] = 1
                self.new_novel_states += 1

        # if no reward from the game reward from novelty
        if reward == 0:
            reward = novelty_reward

        game_action = self.action_handler.game_action_to_action_ind(
            action_performed)
        if self.state_tm1 is not None:
            self.exp_handler.add_sample(self.state_tm1, game_action, reward,
                                        False)

        # generate minibatch data
        if self.exp_handler.size > self.minimum_replay_size:
            states, actions, rewards, state_tp1s, terminal = self.exp_handler.random_batch(
                32)
            cost = self.cnn.train(states, actions, rewards, state_tp1s,
                                  terminal)
            self.costList.append(cost)
            self.action_handler.anneal()

        self.state_tm1 = frames[-1]

    def set_legal_actions(self, legal_actions):
        self.num_actions = len(legal_actions)
        self.action_handler.set_legal_actions(legal_actions)

    def get_action(self, processed_screens):
        return self.cnn.get_output(processed_screens)[0]

    def get_game_action(self):
        return self.action_handler.action_vect_to_game_action(
            self.get_action(
                self.exp_handler.phi(self.state_tm1).reshape(
                    1, self.skip_frame, 84, 84)))

    def game_over(self):
        self.exp_handler.add_terminal()  # adds a terminal
        # print('novel states', self.new_novel_states, 'total states', len(self.frame_table))
        self.new_novel_states = 0

    def get_cost_list(self):
        return self.costList

    def save(self, file):
        self.cnn.save(file)
コード例 #12
0
def main():
    import os
    import pickle

    import matplotlib.pyplot as plt
    from learningALE.learners.nns import CNN
    from scipy.misc import imresize

    from learningALE.handlers.actionhandler import ActionHandler, ActionPolicy
    from learningALE.libs.ale_python_interface import ALEInterface
    import lasagne
    import numpy as np

    # plt.ion()
    skipFrame = 3
    cnn = CNN((None, skipFrame, 86, 80), 6, .1, stride=(4,2))
    with open(os.getcwd()+'\datasets\\spccnn.pkl', 'rb') as infile:
        parms = pickle.load(infile)
        lasagne.layers.set_all_param_values(cnn.l_out, parms)

    # rom = b'D:\\_code\\breakout.bin'
    rom = b'D:\\_code\\space_invaders.bin'

    ale = ALEInterface(True)
    ale.loadROM(rom)
    (screen_width, screen_height) = ale.getScreenDims()
    legal_actions = ale.getMinimalActionSet()
    # get labels
    labels = ['noop', 'fire', 'up', 'right', 'left', 'down', 'upright', 'upleft', 'downright', 'downleft', 'upfire', 'rightfire', 'leftfire', 'downfire', 'uprightfire'
              , 'upleftfire', 'downrightfire', 'downleftfire']
    labels = np.asarray(labels)[legal_actions]

    # set up vars
    actionHandler = ActionHandler(ActionPolicy.eGreedy, (.1, .1, 2), legal_actions)
    rewList = list()
    for ep in range(100):
        total_reward = 0.0
        trainCount = 0
        ale.reset_game()
        while not ale.game_over():
            # get frames
            frames = list()
            reward = 0
            for frame in range(skipFrame):
                gamescreen = ale.getScreenRGB()
                processedImg = np.asarray(
                    gamescreen.view(np.uint8).reshape(screen_height, screen_width, 4)[25:-12, :, 0],
                    dtype=np.float32)
                processedImg[processedImg > 1] = 255
                processedImg = imresize(processedImg, 0.5, interp='nearest')/255
                frames.append(processedImg)

                performedAction, actionInd = actionHandler.getLastAction()
                rew = ale.act(performedAction)
                if rew > 0:
                    rew = 1
                reward += rew
            total_reward += reward
            frames = np.asarray(frames, dtype=np.float32)

            actionVect = cnn.get_output(frames.reshape((1, skipFrame, frames.shape[1], 80)))[0]
            actionHandler.setAction(actionVect)
            # hid1_act = cnn.get_hid1_act(frames.reshape((1, skip_frame, frames.shape[1], 80)))
            # hid2_act = cnn.get_hid2_act(frames.reshape((1, skip_frame, frames.shape[1], 80)))
            # for x in range(hid1_act.shape[1]):
            #     plt.subplot(4,4,x+1)
            #     plt.imshow(hid1_act[0,x], cmap=plt.cm.gray)
            # for x in range(hid2_act.shape[1]):
            #     plt.subplot(6,6,x+1)
            #     plt.imshow(hid2_act[0,x], cmap=plt.cm.gray)
            # plt.show()
            # plt.clf()
            # plt.plot(actionVect)
            # plt.xticks(range(len(labels)), labels)
            # plt.pause(0.001)
        rewList.append(total_reward)
        print(ep, total_reward)


    print(np.mean(rewList), np.std(rewList), np.max(rewList), np.min(rewList))
    print(np.unique(rewList, return_counts=True))
    plt.plot(rewList)
    plt.show()
コード例 #13
0
def main():
    import os
    import pickle

    import matplotlib.pyplot as plt
    from learningALE.learners.nns import CNN
    from scipy.misc import imresize

    from learningALE.handlers.actionhandler import ActionHandler, ActionPolicy
    from learningALE.libs.ale_python_interface import ALEInterface
    import lasagne
    import numpy as np

    # plt.ion()
    skipFrame = 3
    cnn = CNN((None, skipFrame, 86, 80), 6, .1, stride=(4, 2))
    with open(os.getcwd() + '\datasets\\spccnn.pkl', 'rb') as infile:
        parms = pickle.load(infile)
        lasagne.layers.set_all_param_values(cnn.l_out, parms)

    # rom = b'D:\\_code\\breakout.bin'
    rom = b'D:\\_code\\space_invaders.bin'

    ale = ALEInterface(True)
    ale.loadROM(rom)
    (screen_width, screen_height) = ale.getScreenDims()
    legal_actions = ale.getMinimalActionSet()
    # get labels
    labels = [
        'noop', 'fire', 'up', 'right', 'left', 'down', 'upright', 'upleft',
        'downright', 'downleft', 'upfire', 'rightfire', 'leftfire', 'downfire',
        'uprightfire', 'upleftfire', 'downrightfire', 'downleftfire'
    ]
    labels = np.asarray(labels)[legal_actions]

    # set up vars
    actionHandler = ActionHandler(ActionPolicy.eGreedy, (.1, .1, 2),
                                  legal_actions)
    rewList = list()
    for ep in range(100):
        total_reward = 0.0
        trainCount = 0
        ale.reset_game()
        while not ale.game_over():
            # get frames
            frames = list()
            reward = 0
            for frame in range(skipFrame):
                gamescreen = ale.getScreenRGB()
                processedImg = np.asarray(gamescreen.view(np.uint8).reshape(
                    screen_height, screen_width, 4)[25:-12, :, 0],
                                          dtype=np.float32)
                processedImg[processedImg > 1] = 255
                processedImg = imresize(processedImg, 0.5,
                                        interp='nearest') / 255
                frames.append(processedImg)

                performedAction, actionInd = actionHandler.getLastAction()
                rew = ale.act(performedAction)
                if rew > 0:
                    rew = 1
                reward += rew
            total_reward += reward
            frames = np.asarray(frames, dtype=np.float32)

            actionVect = cnn.get_output(
                frames.reshape((1, skipFrame, frames.shape[1], 80)))[0]
            actionHandler.setAction(actionVect)
            # hid1_act = cnn.get_hid1_act(frames.reshape((1, skip_frame, frames.shape[1], 80)))
            # hid2_act = cnn.get_hid2_act(frames.reshape((1, skip_frame, frames.shape[1], 80)))
            # for x in range(hid1_act.shape[1]):
            #     plt.subplot(4,4,x+1)
            #     plt.imshow(hid1_act[0,x], cmap=plt.cm.gray)
            # for x in range(hid2_act.shape[1]):
            #     plt.subplot(6,6,x+1)
            #     plt.imshow(hid2_act[0,x], cmap=plt.cm.gray)
            # plt.show()
            # plt.clf()
            # plt.plot(actionVect)
            # plt.xticks(range(len(labels)), labels)
            # plt.pause(0.001)
        rewList.append(total_reward)
        print(ep, total_reward)

    print(np.mean(rewList), np.std(rewList), np.max(rewList), np.min(rewList))
    print(np.unique(rewList, return_counts=True))
    plt.plot(rewList)
    plt.show()
コード例 #14
0
ファイル: DQN.py プロジェクト: hearthstoneboss/learningALE
class DQNLearner(learner):
    def __init__(self,
                 skip_frame,
                 num_actions,
                 load=None,
                 random_state=np.random.RandomState()):
        super().__init__()

        rand_vals = (
            1, 0.1, 1000000
        )  # starting at 1 anneal eGreedy policy to 0.1 over 1,000,000 actions
        self.action_handler = ActionHandler(rand_vals)

        self.minimum_replay_size = 100
        self.exp_handler = DataSet(84,
                                   84,
                                   random_state,
                                   max_steps=1000000,
                                   phi_length=skip_frame)
        self.cnn = CNN((None, skip_frame, 84, 84), num_actions)

        self.skip_frame = skip_frame
        self.discount = .95
        self.costList = list()
        self.state_tm1 = None

        if load is not None:
            self.cnn.load(load)

    def frames_processed(self, frames, action_performed, reward):
        game_action = self.action_handler.game_action_to_action_ind(
            action_performed)
        if self.state_tm1 is not None:
            self.exp_handler.add_sample(self.state_tm1, game_action, reward,
                                        False)

        # generate minibatch data
        if self.exp_handler.size > self.minimum_replay_size:
            states, actions, rewards, state_tp1s, terminal = self.exp_handler.random_batch(
                32)
            cost = self.cnn.train(states, actions, rewards, state_tp1s,
                                  terminal)
            self.costList.append(cost)
            self.action_handler.anneal()

        self.state_tm1 = frames[-1]

    def get_action(self, processed_screens):
        return self.cnn.get_output(processed_screens)[0]

    def game_over(self):
        self.exp_handler.add_terminal()  # adds a terminal

    def get_game_action(self):
        return self.action_handler.action_vect_to_game_action(
            self.get_action(
                self.exp_handler.phi(self.state_tm1).reshape(
                    1, self.skip_frame, 84, 84)))

    def set_legal_actions(self, legal_actions):
        self.action_handler.set_legal_actions(legal_actions)

    def save(self, file):
        self.cnn.save(file)

    def get_cost_list(self):
        return self.costList