コード例 #1
0
def main():
    iris = load_iris()
    # we only take the first two features. We could avoid this ugly
    # slicing by using a two-dim dataset
    X = iris.data[:, :2]
    y = iris.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    model = KNeighborsClassifier(n_neighbors=5)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = calculate_accuracy_score(y_test, y_pred)
    print("Accuracy Score: {:.2%}".format(accuracy))

    h = .05  # step size in the mesh
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
    cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))

    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.savefig('./examples/example_KNeighborsClassifier.png')
コード例 #2
0
def main():
    iris = load_iris()
    X = iris.data
    y = iris.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    model = XGBoost(n_estimators=300, learning_rate=0.001)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    accuracy = calculate_accuracy_score(y_test, y_pred)
    print("Accuracy Score: {:.2%}".format(accuracy))
コード例 #3
0
def main():
    iris = load_iris()
    X = iris.data
    y = iris.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    clf = GradientBoostingClassifier(n_estimators=200, learning_rate=.5)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = calculate_accuracy_score(y_test, y_pred)
    print("Accuracy Score: {:.2%}".format(accuracy))
コード例 #4
0
def main():
    iris = load_iris()
    X = iris.data
    y = iris.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    model = RandomForestClassifier(n_estimators=200, max_depth=10)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    accuracy = calculate_accuracy_score(y_test, y_pred)
    print("Accuracy Score: {:.2%}".format(accuracy))
コード例 #5
0
def main():
    iris = load_iris()

    X = iris.data
    y = iris.target
    target_names = iris.target_names

    lda = LinearDiscriminantAnalysis(n_components=2)
    pca = PCA(n_components=2)

    X_r = pca.fit(X).transform(X)
    X_r2 = lda.fit(X, y).transform(X)

    # plot
    plt.figure(figsize=(15, 6))

    # pca, left
    plt.subplot(121)
    colors = ['navy', 'turquoise', 'darkorange']
    lw = 2

    for color, i, target_name in zip(colors, [0, 1, 2], target_names):
        plt.scatter(X_r[y == i, 0],
                    X_r[y == i, 1],
                    color=color,
                    alpha=.8,
                    lw=lw,
                    label=target_name)
    plt.legend(loc='best', shadow=False, scatterpoints=1)
    plt.title('PCA of IRIS dataset')

    # lda, right
    plt.subplot(122)
    for color, i, target_name in zip(colors, [0, 1, 2], target_names):
        plt.scatter(X_r2[y == i, 0],
                    X_r2[y == i, 1],
                    alpha=.8,
                    color=color,
                    label=target_name)
    plt.legend(loc='best', shadow=False, scatterpoints=1)
    plt.title('LDA of IRIS dataset')
    plt.savefig('./examples/example_PCA_LDA.png')
コード例 #6
0
def main():
    # Example 1
    X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    Y = np.array([1, 1, 1, 2, 2, 2])

    model = GaussianNB()
    model.fit(X, Y)
    print(model.predict([[-0.8, -1]]))

    # Example 2
    iris = load_iris()
    X = normalize(iris.data)
    y = iris.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    model = GaussianNB()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = calculate_accuracy_score(y_test, y_pred)
    print("Accuracy Score: {:.2%}".format(accuracy))
コード例 #7
0
def main():
    iris = load_iris()
    X = iris["data"][:, 3:]  # petal width
    y = (iris["target"] == 2).astype(np.int)  # 1 if Iris-Virginica, else 0

    model = LogisticRegression(max_iter=1000,
                               learning_rate=0.001,
                               fit_intercept=True)
    model.fit(X, y)
    y_pred = model.predict(X)

    accuracy = calculate_accuracy_score(y, y_pred)
    print("Accuracy Score: {:.2%}".format(accuracy))

    X_new = np.linspace(0, 3, 1000).reshape(-1, 1)
    y_proba = model.predict_proba(X_new)

    plt.plot(X_new, y_proba[:, 0], "m--", label="Not Iris-Virginica")
    plt.plot(X_new, y_proba[:, 1], "c-", label="Iris-Virginica")

    plt.plot(X[y == 0], y[y == 0], "m.")
    plt.plot(X[y == 1], y[y == 1], "c.")
    plt.legend()
    plt.savefig("./examples/example_LogisticRegression.png")
コード例 #8
0
ファイル: example_KMeans.py プロジェクト: Rost381/learnml
def main():
    # Example 1
    X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]])
    kmeans = KMeans(n_clusters=2)
    kmeans.fit(X)

    print(kmeans.cluster_centers_)
    print(kmeans.labels_)
    print(kmeans.inertia_)
    print(kmeans.predict([[0, 0], [12, 3]]))

    # Example 2
    iris = load_iris()
    X = iris.data
    y = iris.target

    kmeans = KMeans(n_clusters=3)
    kmeans.fit(X)
    labels = kmeans.labels_

    fig = plt.figure(figsize=(12, 5))
    ax = fig.add_subplot(1, 2, 1, projection='3d', elev=48, azim=134)
    for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:
        ax.text3D(X[y == label, 3].mean(),
                  X[y == label, 0].mean(),
                  X[y == label, 2].mean() + 2,
                  name,
                  horizontalalignment='center',
                  bbox=dict(alpha=.2, edgecolor='w', facecolor='w'))

    ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels, edgecolor='k')

    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
    ax.set_xlabel('Petal width')
    ax.set_ylabel('Sepal length')
    ax.set_zlabel('Petal length')
    ax.set_title('3 clusters')
    ax.dist = 12

    ax = fig.add_subplot(1, 2, 2, projection='3d', elev=48, azim=134)
    for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:
        ax.text3D(X[y == label, 3].mean(),
                  X[y == label, 0].mean(),
                  X[y == label, 2].mean() + 2,
                  name,
                  horizontalalignment='center',
                  bbox=dict(alpha=.2, edgecolor='w', facecolor='w'))

    y = np.choose(y, [1, 2, 0]).astype(np.float)
    ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y, edgecolor='k')

    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
    ax.set_xlabel('Petal width')
    ax.set_ylabel('Sepal length')
    ax.set_zlabel('Petal length')
    ax.set_title('Ground Truth')
    ax.dist = 12
    plt.savefig("./examples/example_KMeans.png")