コード例 #1
0
ファイル: MDFHandler.py プロジェクト: NeuroML/NeuroMLlite
    def _get_lems_model_with_neuroml2_types(cls):

        from pyneuroml.pynml import get_path_to_jnml_jar
        from pyneuroml.pynml import read_lems_file
        from lems.parser.LEMS import LEMSFileParser
        import zipfile

        lems_model = lems.Model(include_includes=False)
        parser = LEMSFileParser(lems_model)

        jar_path = get_path_to_jnml_jar()
        # print_comment_v("Loading standard NeuroML2 dimension/unit definitions from %s"%jar_path)
        jar = zipfile.ZipFile(jar_path, "r")
        new_lems = jar.read("NeuroML2CoreTypes/NeuroMLCoreDimensions.xml")
        parser.parse(new_lems)
        new_lems = jar.read("NeuroML2CoreTypes/NeuroMLCoreCompTypes.xml")
        parser.parse(new_lems)
        new_lems = jar.read("NeuroML2CoreTypes/Cells.xml")
        parser.parse(new_lems)
        new_lems = jar.read("NeuroML2CoreTypes/Networks.xml")
        parser.parse(new_lems)
        new_lems = jar.read("NeuroML2CoreTypes/Simulation.xml")
        parser.parse(new_lems)
        new_lems = jar.read("NeuroML2CoreTypes/Synapses.xml")
        parser.parse(new_lems)
        new_lems = jar.read("NeuroML2CoreTypes/PyNN.xml")
        parser.parse(new_lems)

        return lems_model
コード例 #2
0
def read_lems_file(fname):
    """Import LEMS model from file fname or builtin model name.
    """
    here = os.path.dirname(os.path.abspath(__file__))
    builtin_fname = os.path.join(here, fname + '.lems.xml')
    if os.path.exists(builtin_fname):
        fname = builtin_fname
    model = lems.Model()
    model.import_from_file(fname)
    return model
コード例 #3
0
ファイル: lemsexport.py プロジェクト: starhxh/brian2tools
 def __init__(self):
     self._model = lems.Model()
     self._all_params_unit = {}
     self._population = None
     self._model_namespace = {'neuronname': None,
                              'ct_populationname': None,
                              'populationname': None,
                              'networkname': None,
                              'targetname': None,
                              'simulname': None,
                              'poiss_generator': "poiss"}
コード例 #4
0
    def _load_lems_file_with_neuroml2_types(cls, lems_filename):

        from pyneuroml.pynml import get_path_to_jnml_jar
        from pyneuroml.pynml import read_lems_file
        from lems.parser.LEMS import LEMSFileParser
        import zipfile

        lems_model = lems.Model(include_includes=False)
        parser = LEMSFileParser(lems_model)

        jar_path = get_path_to_jnml_jar()
        # print_comment_v("Loading standard NeuroML2 dimension/unit definitions from %s"%jar_path)
        jar = zipfile.ZipFile(jar_path, 'r')
        new_lems = jar.read('NeuroML2CoreTypes/NeuroMLCoreDimensions.xml')
        parser.parse(new_lems)
        new_lems = jar.read('NeuroML2CoreTypes/NeuroMLCoreCompTypes.xml')
        parser.parse(new_lems)
        new_lems = jar.read('NeuroML2CoreTypes/Cells.xml')
        parser.parse(new_lems)
        new_lems = jar.read('NeuroML2CoreTypes/Networks.xml')
        parser.parse(new_lems)
        new_lems = jar.read('NeuroML2CoreTypes/Simulation.xml')
        parser.parse(new_lems)
        new_lems = jar.read('NeuroML2CoreTypes/Synapses.xml')
        parser.parse(new_lems)
        new_lems = jar.read('NeuroML2CoreTypes/PyNN.xml')
        parser.parse(new_lems)

        model = read_lems_file(lems_filename,
                               include_includes=False,
                               fail_on_missing_includes=True,
                               debug=True)

        for cid, c in model.components.items():
            lems_model.components[cid] = c
        for ctid, ct in model.component_types.items():
            lems_model.component_types[ctid] = ct

        return lems_model
コード例 #5
0
def build_lems_for_model(src):
    model = lems.Model()

    model.add(lems.Dimension('time', t=1))
    # model.add(lems.Dimension('au'))

    # primary element of the model is a mass model component
    mass = lems.ComponentType(src.name, extends="baseCellMembPot")
    model.add(mass)
    
    ######### Adding v is required to ease mapping to NEURON...
    mass.dynamics.add(lems.StateVariable(name="v", dimension="voltage", exposure="v"))
    
    mass.add(lems.Attachments(name="synapses",type_="basePointCurrentDL"))
    

    for input in src.input:
        mass.dynamics.add(lems.DerivedVariable(name=input, 
                                               dimension='none',
                                               exposure=input,
                                               select='synapses[*]/I',
                                               reduce='add'))
        mass.add(lems.Exposure(input, 'none'))
        
        
    for key, val in src.const.items():
        mass.add(lems.Parameter(key, 'none'))  # TODO units
        
    
        
    mass.add(lems.Constant(name="MSEC", dimension="time", value="1ms"))
    mass.add(lems.Constant(name="PI", dimension="none", value="3.14159265359"))

    states = []
    der_vars = []
    # for key in src.param:
    #     mass.add(lems.Parameter(key, 'au'))  # TODO units

    for key, val in src.auxex:
        val = val.replace('**', '^')
        mass.dynamics.add(lems.DerivedVariable(key, value=val))

    for key in src.obsrv:
        name_dv = key.replace('(','_').replace(')','').replace(' - ','_min_')
        mass.dynamics.add(lems.DerivedVariable(name_dv, value=key, exposure=name_dv))
        mass.add(lems.Exposure(name_dv, 'none'))

    for src_svar in src.state_space:
        name = src_svar.name
        ddt = src_svar.drift.replace('**', '^')
        mass.dynamics.add(lems.StateVariable(name, 'none', name))
        mass.dynamics.add(lems.TimeDerivative(name, '(%s)/MSEC'%ddt))
        mass.add(lems.Exposure(name, 'none'))
        
    ''' On condition is not need on the model but NeuroML requires its definition -->
            <OnCondition test="r .lt. 0">
                <EventOut port="spike"/>
            </OnCondition>'''
            
    oc = lems.OnCondition(test='v .gt. 0')
    oc.actions.append(lems.EventOut(port='spike'))
    mass.dynamics.add(oc)

    return model
コード例 #6
0
    def handle_population(self, 
                          population_id, 
                          component, size=-1, 
                          component_obj=None, 
                          properties={}):
        
        sizeInfo = " as yet unspecified size"
        if size>=0:
            sizeInfo = ", size: "+ str(size)+ " cells"
        if component_obj:
            compInfo = " (%s)"%component_obj.__class__.__name__
        else:
            compInfo=""
            
        print_v("Population: "+population_id+", component: "+component+compInfo+sizeInfo)
        
        if size>=0:
            for i in range(size):
                node_id = '%s_%i'%(population_id, i)
                node = {}
                node['type'] = {}
                node['name'] = node_id
                #node['type']['NeuroML'] = component
                
                comp = self.nl_network.get_child(component, 'cells')
                base_dir = './' # for now...
                fname = locate_file(comp.lems_source_file, base_dir)
                model = lems.Model()
                model.import_from_file(fname)
                lems_comp = model.components.get(component)
                print('Cell: [%s] comes from %s and in Lems is: %s'%(comp,fname, lems_comp))
                comp_type = lems_comp.type
                
                type = "The type of %s"%comp_type
                function = "The function of %s"%comp_type
                
                if comp_type == 'pnlLinearFunctionTM':
                    function = 'Linear'
                    type = "TransferMechanism" 
                elif comp_type == 'inputNode':
                    function = 'Linear'
                    type = "TransferMechanism"
                elif comp_type == 'pnlLogisticFunctionTM':
                    function = 'Logistic'
                    type = "TransferMechanism"
                elif comp_type == 'pnlExponentialFunctionTM':
                    function = 'Exponential'
                    type = "TransferMechanism"
                elif comp_type == 'pnlSimpleIntegratorMechanism':
                    function = 'SimpleIntegrator'
                    type = "IntegratorMechanism"
                
                
                
                node['type']["PNL"] = type
                node['type']["generic"] = None
                node['parameters'] = {}
                node['parameters']['PNL'] = {}
                node['functions'] = []
                func_info = {}
                func_info['type']={}
                func_info['type']['generic']=function
                func_info['name']='Function_%s'%function
                func_info['args']={}
                for p in lems_comp.parameters:
                    func_info['args'][p] = {}
                    func_info['args'][p]['type'] = 'float'
                    func_info['args'][p]['source'] = '%s.input_ports.%s'%(node_id,p)
                    
                    if comp.parameters is not None and p in comp.parameters:
                        func_info['args'][p]['value'] = evaluate(comp.parameters[p], self.nl_network.parameters)
                    else:
                        func_info['args'][p]['value'] = evaluate(lems_comp.parameters[p]) # evaluate to ensure strings -> ints/floats etc
                
                node['functions'].append(func_info)
                self.bids_mdf_graph['nodes'][node_id] = node

            pop_node_id = '%s'%(population_id)
            pop_node = {}
            pop_node['type'] = {}
            pop_node['name'] = pop_node_id
            pop_node['type']['NeuroML'] = component
            pop_node['parameters'] = {}
            pop_node['parameters']['size'] = size
            pop_node['functions'] = {}
            self.bids_mdf_graph_hl['nodes'][pop_node_id] = pop_node
コード例 #7
0
#! /usr/bin/python

import lems.api as lems

model = lems.Model()

model.add(lems.Dimension('voltage', m=1, l=3, t=-3, i=-1))
model.add(lems.Dimension('time', t=1))
model.add(lems.Dimension('capacitance', m=-1, l=-2, t=4, i=2))

model.add(lems.Unit('milliVolt', 'mV', 'voltage', -3))
model.add(lems.Unit('milliSecond', 'ms', 'time', -3))
model.add(lems.Unit('microFarad', 'uF', 'capacitance', -12))

iaf1 = lems.ComponentType('iaf1')
model.add(iaf1)

iaf1.add(lems.Parameter('threshold', 'voltage'))
iaf1.add(lems.Parameter('reset', 'voltage'))
iaf1.add(lems.Parameter('refractoryPeriod', 'time'))
iaf1.add(lems.Parameter('capacitance', 'capacitance'))
iaf1.add(lems.Exposure('vexp', 'voltage'))
dp = lems.DerivedParameter('range', 'threshold - reset', 'voltage')
iaf1.add(dp)

iaf1.dynamics.add(lems.StateVariable('v','voltage', 'vexp')) 
iaf1.dynamics.add(lems.DerivedVariable('v2',dimension='voltage', value='v*2'))
cdv = lems.ConditionalDerivedVariable('v_abs','voltage')
cdv.add(lems.Case('v .geq. 0','v'))
cdv.add(lems.Case('v .lt. 0','-1*v'))
iaf1.dynamics.add(cdv)
コード例 #8
0
def create_GoC_network( duration, dt, seed, N_goc=0, run=False, prob_type='Boltzmann', GJw_type='Vervaeke2010' ):


	goc_filename = 'GoC.cell.nml'
	goc_file = pynml.read_neuroml2_file( goc_filename )
	goc_type = goc_file.cells[0]
	
	GJ_filename = 'GapJuncCML.nml'
	GJ_file = pynml.read_neuroml2_file( GJ_filename )
	GJ_type = GJ_file.gap_junctions[0]

	MFSyn_filename = 'MF_GoC_Syn.nml'
	mfsyn_file = pynml.read_neuroml2_file( MFSyn_filename )
	MFSyn_type = mfsyn_file.exp_three_synapses[0]
	
	MF20Syn_filename = 'MF_GoC_SynMult.nml'
	mf20syn_file = pynml.read_neuroml2_file( MF20Syn_filename )
	MF20Syn_type = mf20syn_file.exp_three_synapses[0]
	
	# Distribute cells in 3D
	if N_goc>0:
		GoC_pos = nu.GoC_locate(N_goc)
	else:
		GoC_pos = nu.GoC_density_locate()
		N_goc = GoC_pos.shape[0]
		
	# get GJ connectivity
	GJ_pairs, GJWt = nu.GJ_conn( GoC_pos, prob_type, GJw_type )
	tmp1, tmp2 = valnet.gapJuncAnalysis( GJ_pairs, GJWt )
	print("Number of gap junctions per cell: ", tmp1)
	print("Net GJ conductance per cell:", tmp2)
	
	# Create pop List
	goc_pop = nml.Population( id=goc_type.id+"Pop", component = goc_type.id, type="populationList", size=N_goc )
	
	# Create NML document for network specification
	net = nml.Network( id="gocNetwork", type="networkWithTemperature" , temperature="23 degC" )
	net_doc = nml.NeuroMLDocument( id=net.id )
	net_doc.networks.append( net )
	net_doc.includes.append( goc_type )
	
	net.populations.append( goc_pop )
	
	#Add locations for GoC instances in the population:
	for goc in range(N_goc):
		inst = nml.Instance( id=goc )
		goc_pop.instances.append( inst )
		inst.location = nml.Location( x=GoC_pos[goc,0], y=GoC_pos[goc,1], z=GoC_pos[goc,2] )
		
	# Define input spiketrains
	input_type = 'spikeGenerator'#'spikeGeneratorPoisson'
	lems_inst_doc = lems.Model()
	mf_inputs = lems.Component( "MF_Input", input_type)
	mf_inputs.set_parameter("period", "2000 ms" )
	#mf_inputs.set_parameter("averageRate", "50 Hz")
	lems_inst_doc.add( mf_inputs )
	
	#synapse_type = 'alphaCurrentSynapse'
	#alpha_syn = lems.Component( "AlphaSyn", synapse_type)
	#alpha_syn.set_parameter("tau", "30 ms" )
	#alpha_syn.set_parameter("ibase", "200 pA")
	#lems_inst_doc.add( alpha_syn )
	
	# Define MF input population
	
	N_mf = 15
	#MF_pop = nml.Population(id=mf_inputs.id+"_pop", component=mf_inputs.id, type="populationList", size=N_mf)
	#net.populations.append( MF_pop )

	mf_type2 = 'spikeGeneratorPoisson'
	#mf_poisson = lems.Component( "MF_Poisson", mf_type2)
	#mf_poisson.set_parameter("averageRate", "5 Hz")
	#lems_inst_doc.add( mf_poisson )
	# adding in neuroml document instead of mf_poisson
	mf_poisson = nml.SpikeGeneratorPoisson( id = "MF_Poisson", average_rate="5 Hz" )
	net_doc.spike_generator_poissons.append( mf_poisson )
	
	net_doc.includes.append( goc_type )
	MF_Poisson_pop = nml.Population(id=mf_poisson.id+"_pop", component=mf_poisson.id, type="populationList", size=N_mf)
	net.populations.append( MF_Poisson_pop )
	MF_pos = nu.GoC_locate( N_mf )
	for mf in range( N_mf ):
		inst = nml.Instance(id=mf)
		MF_Poisson_pop.instances.append( inst )
		inst.location = nml.Location( x=MF_pos[mf,0], y=MF_pos[mf,1], z=MF_pos[mf,2] )
		
	# Setup Mf->GoC synapses
	#MFprojection = nml.Projection(id="MFtoGoC", presynaptic_population=MF_pop.id, postsynaptic_population=goc_pop.id, synapse=alpha_syn.id)
	#net.projections.append(MFprojection)

	MF2projection = nml.Projection(id="MF2toGoC", presynaptic_population=MF_Poisson_pop.id, postsynaptic_population=goc_pop.id, synapse=MFSyn_type.id)#alpha_syn.id
	net.projections.append(MF2projection)


	#Get list of MF->GoC synapse
	mf_synlist = nu.randdist_MF_syn( N_mf, N_goc, pConn=0.3)
	nMFSyn = mf_synlist.shape[1]
	for syn in range( nMFSyn ):
		mf, goc = mf_synlist[:, syn]
		conn2 = nml.Connection(id=syn, pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, mf, mf_poisson.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		MF2projection.connections.append(conn2)
		
		
	# Burst of MF input (as explicit input)
	mf_bursttype = 'transientPoissonFiringSynapse'
	mf_burst = lems.Component( "MF_Burst", mf_bursttype)
	mf_burst.set_parameter( "averageRate", "100 Hz" )
	mf_burst.set_parameter( "delay", "2000 ms" )
	mf_burst.set_parameter( "duration", "500 ms" )
	mf_burst.set_parameter( "synapse", MF20Syn_type.id )
	mf_burst.set_parameter( "spikeTarget", './{}'.format(MF20Syn_type.id) )
	lems_inst_doc.add( mf_burst )
	
	
	# Add few burst inputs
	n_bursts = 4
	gocPerm = np.random.permutation( N_goc )
	ctr = 0
	for gg in range(4):
		goc = gocPerm[gg]
		for jj in range( n_bursts ):
			inst = nml.ExplicitInput( id=ctr, target='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), input=mf_burst.id, synapse=MF20Syn_type.id, spikeTarget='./{}'.format(MF20Syn_type.id))
			net.explicit_inputs.append( inst )
			ctr += 1
		
	
	'''
	one-to-one pairing of MF and GoC -> no shared inputs
	for goc in range(N_mf):
		#inst = nml.Instance(id=goc)
		#MF_pop.instances.append( inst )
		#inst.location = nml.Location( x=GoC_pos[goc,0], y=GoC_pos[goc,1], z=GoC_pos[goc,2]+100 )
		#conn = nml.Connection(id=goc, pre_cell_id='../{}/{}/{}'.format(MF_pop.id, goc, mf_inputs.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		#MFprojection.connections.append(conn)

		goc2 = N_goc-goc-1
		inst2 = nml.Instance(id=goc)
		MF_Poisson_pop.instances.append( inst2 )
		inst2.location = nml.Location( x=GoC_pos[goc2,0], y=GoC_pos[goc2,1], z=GoC_pos[goc2,2]+100 )
		conn2 = nml.Connection(id=goc, pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, goc, mf_poisson.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc2, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		MF2projection.connections.append(conn2)

	'''
	
	# Add electrical synapses
	GoCCoupling = nml.ElectricalProjection( id="gocGJ", presynaptic_population=goc_pop.id, postsynaptic_population=goc_pop.id )
	
	#print(GJ_pairs)
	gj = nml.GapJunction( id="GJ_0", conductance="426pS" )
	net_doc.gap_junctions.append(gj)
	nGJ = GJ_pairs.shape[0]
	for jj in range( nGJ ):
		#gj.append( lems.Component( "GJ_%d"%jj, 'gapJunction') )
		#gj[jj].set_parameter( "conductance", "%fnS"%(GJWt[jj]) )
		#gj = nml.GapJunction(id="GJ_%d"%jj, conductance="%fnS"%(GJWt[jj]))
		#net_doc.gap_junctions.append(gj)
		#lems_inst_doc.add( gj[jj] )
		#print("%fnS"%(GJWt[jj]*0.426))
		conn = nml.ElectricalConnectionInstanceW( id=jj, pre_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj,0], goc_type.id), pre_segment='1', pre_fraction_along='0.5', post_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj,1], goc_type.id), post_segment='1', post_fraction_along='0.5', synapse=gj.id, weight=GJWt[jj] )#synapse="GapJuncCML" synapse=gj.id , conductance="100E-9mS"
		# ------------ need to create GJ component
		GoCCoupling.electrical_connection_instance_ws.append( conn )
	
	net.electrical_projections.append( GoCCoupling )	
		
		
		
	net_filename = 'gocNetwork.nml'
	pynml.write_neuroml2_file( net_doc, net_filename )
	lems_filename = 'instances.xml'
	pynml.write_lems_file( lems_inst_doc, lems_filename, validate=False )

	simid = 'sim_gocnet'+goc_type.id
	ls = LEMSSimulation( simid, duration=duration, dt=dt, simulation_seed=seed )
	ls.assign_simulation_target( net.id )
	
	#ls.include_lems_file( 'Synapses.xml', include_included=False)
	#ls.include_lems_file( 'Inputs.xml', include_included=False)
	ls.include_neuroml2_file( net_filename)
	ls.include_neuroml2_file( goc_filename)
	ls.include_neuroml2_file( GJ_filename)
	ls.include_neuroml2_file( MFSyn_filename)
	ls.include_neuroml2_file( MF20Syn_filename)
	ls.include_lems_file( lems_filename, include_included=False)
	
	
	# Specify outputs
	eof0 = 'Events_file'
	ls.create_event_output_file(eof0, "%s.v.spikes"%simid,format='ID_TIME')
	for jj in range( goc_pop.size):
		ls.add_selection_to_event_output_file( eof0, jj, '{}/{}/{}'.format( goc_pop.id, jj, goc_type.id), 'spike' )
		
	of0 = 'Volts_file'
	ls.create_output_file(of0, "%s.v.dat"%simid)
	for jj in range( goc_pop.size ):
		ls.add_column_to_output_file(of0, jj, '{}/{}/{}/v'.format( goc_pop.id, jj, goc_type.id))
		
	#Create Lems file to run
	lems_simfile = ls.save_to_file()

	#res = pynml.run_lems_with_jneuroml( lems_simfile, max_memory="1G",nogui=True, plot=False)
	#res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", only_generate_scripts = True, compile_mods = False, nogui=True, plot=False)
	res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", compile_mods = False,nogui=True, plot=False)
	#res=True
	return res
コード例 #9
0
def generate_grc_layer_network(
        runID,
        correlationRadius,
        NADT,
        duration,
        dt,
        minimumISI,  # ms
        ONRate,  # Hz
        OFFRate,  # Hz
        run=False):
    ########################################
    # Load parameters for this run
    file = open('../params_file.pkl', 'r')
    p = pkl.load(file)
    N_syn = p['N_syn'][int(runID) - 1]
    f_mf = p['f_mf'][int(runID) - 1]
    run_num = p['run_num'][int(runID) - 1]
    file.close()
    #################################################################################
    # Get connectivity matrix between cells
    file = open('../../network_structures/GCLconnectivity_' + str(N_syn) +
                '.pkl')
    p = pkl.load(file)
    conn_mat = p['conn_mat']
    N_mf, N_grc = conn_mat.shape
    assert (np.all(conn_mat.sum(
        axis=0) == N_syn)), 'Connectivity matrix is incorrect.'
    # Get MF activity pattern
    if correlationRadius == 0:  # Activate MFs randomly
        N_mf_ON = int(N_mf * f_mf)
        mf_indices_ON = random.sample(range(N_mf), N_mf_ON)
        mf_indices_ON.sort()
    elif correlationRadius > 0:  # Spatially correlated MFs
        f_mf_range = np.linspace(.05, .95, 19)
        f_mf_ix = np.where(f_mf_range == f_mf)[0][0]
        p = io.loadmat('../../input_statistics/mf_patterns_r' +
                       str(correlationRadius) + '.mat')
        R = p['Rs'][:, :, f_mf_ix]
        g = p['gs'][f_mf_ix]
        t = np.dot(R.transpose(), np.random.randn(N_mf))
        S = (t > -g * np.ones(N_mf))
        mf_indices_ON = np.where(S)[0]
        N_mf_ON = len(mf_indices_ON)
    #
    N_mf_OFF = N_mf - N_mf_ON
    mf_indices_OFF = [x for x in range(N_mf) if x not in mf_indices_ON]
    mf_indices_OFF.sort()
    #################################################################################
    # load NeuroML components, LEMS components and LEMS componentTypes from external files
    # Spike generator (for Poisson MF spiking)
    spike_generator_file_name = "../../grc_lemsDefinitions/spikeGenerators.xml"
    spike_generator_doc = pynml.read_lems_file(spike_generator_file_name)
    # Integrate-and-fire GC model
    # if NADT = 1, loads model GC
    iaf_nml2_file_name = "../../grc_lemsDefinitions/IaF_GrC.nml" if NADT == 0 else "../../grc_lemsDefinitions/IaF_GrC_" + '{:.2f}'.format(
        f_mf) + ".nml"
    iaF_GrC_doc = pynml.read_neuroml2_file(iaf_nml2_file_name)
    iaF_GrC = iaF_GrC_doc.iaf_ref_cells[0]
    # AMPAR and NMDAR mediated synapses
    ampa_syn_filename = "../../grc_lemsDefinitions/RothmanMFToGrCAMPA_" + str(
        N_syn) + ".xml"
    nmda_syn_filename = "../../grc_lemsDefinitions/RothmanMFToGrCNMDA_" + str(
        N_syn) + ".xml"
    rothmanMFToGrCAMPA_doc = pynml.read_lems_file(ampa_syn_filename)
    rothmanMFToGrCNMDA_doc = pynml.read_lems_file(nmda_syn_filename)
    #
    # Define components from the componentTypes we just loaded
    # Refractory poisson input -- representing active MF
    spike_generator_ref_poisson_type = spike_generator_doc.component_types[
        'spikeGeneratorRefPoisson']
    lems_instances_doc = lems.Model()
    spike_generator_on = lems.Component("mossySpikerON",
                                        spike_generator_ref_poisson_type.name)
    spike_generator_on.set_parameter("minimumISI", "%s ms" % minimumISI)
    spike_generator_on.set_parameter("averageRate", "%s Hz" % ONRate)
    lems_instances_doc.add(spike_generator_on)
    # Refractory poisson input -- representing silent MF
    spike_generator_off = lems.Component("mossySpikerOFF",
                                         spike_generator_ref_poisson_type.name)
    spike_generator_off.set_parameter("minimumISI", "%s ms" % minimumISI)
    spike_generator_off.set_parameter("averageRate", "%s Hz" % OFFRate)
    lems_instances_doc.add(spike_generator_off)
    # Synapses
    rothmanMFToGrCAMPA = rothmanMFToGrCAMPA_doc.components[
        'RothmanMFToGrCAMPA'].id
    rothmanMFToGrCNMDA = rothmanMFToGrCNMDA_doc.components[
        'RothmanMFToGrCNMDA'].id
    #
    # Create ON MF, OFF MF, and GC populations
    GrCPop = nml.Population(id="GrCPop", component=iaF_GrC.id, size=N_grc)
    mossySpikersPopON = nml.Population(id=spike_generator_on.id + "Pop",
                                       component=spike_generator_on.id,
                                       size=N_mf_ON)
    mossySpikersPopOFF = nml.Population(id=spike_generator_off.id + "Pop",
                                        component=spike_generator_off.id,
                                        size=N_mf_OFF)
    #
    # Create network and add populations
    net = nml.Network(id="network")
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net.populations.append(GrCPop)
    net.populations.append(mossySpikersPopON)
    net.populations.append(mossySpikersPopOFF)
    #
    # MF-GC connectivity
    # First connect ON MFs to GCs
    for mf_ix_ON in range(N_mf_ON):
        mf_ix = mf_indices_ON[mf_ix_ON]
        # Find which GCs are neighbors
        innervated_grcs = np.where(conn_mat[mf_ix, :] == 1)[0]
        for grc_ix in innervated_grcs:
            # Add AMPAR and NMDAR mediated synapses
            for synapse in [rothmanMFToGrCAMPA, rothmanMFToGrCNMDA]:
                connection = nml.SynapticConnection(
                    from_='{}[{}]'.format(mossySpikersPopON.id, mf_ix_ON),
                    synapse=synapse,
                    to='GrCPop[{}]'.format(grc_ix))
                net.synaptic_connections.append(connection)
    #
    # Now connect OFF MFs to GCs
    for mf_ix_OFF in range(N_mf_OFF):
        mf_ix = mf_indices_OFF[mf_ix_OFF]
        # Find which GCs are neighbors
        innervated_grcs = np.where(conn_mat[mf_ix, :] == 1)[0]
        for grc_ix in innervated_grcs:
            # Add AMPAR and NMDAR mediated synapses
            for synapse in [rothmanMFToGrCAMPA, rothmanMFToGrCNMDA]:
                connection = nml.SynapticConnection(
                    from_='{}[{}]'.format(mossySpikersPopOFF.id, mf_ix_OFF),
                    synapse=synapse,
                    to='GrCPop[{}]'.format(grc_ix))
                net.synaptic_connections.append(connection)
    #
    # Write network to file
    net_file_name = 'generated_network_' + runID + '.net.nml'
    pynml.write_neuroml2_file(net_doc, net_file_name)
    # Write LEMS instances to file
    lems_instances_file_name = 'instances_' + runID + '.xml'
    pynml.write_lems_file(lems_instances_doc,
                          lems_instances_file_name,
                          validate=False)
    # Create a LEMSSimulation to manage creation of LEMS file
    ls = LEMSSimulation('sim_' + runID,
                        duration,
                        dt,
                        lems_seed=int(np.round(1000 * random.random())))
    # Point to network as target of simulation
    ls.assign_simulation_target(net.id)
    # Include generated/existing NeuroML2 files
    ls.include_neuroml2_file(iaf_nml2_file_name)
    ls.include_lems_file(spike_generator_file_name, include_included=False)
    ls.include_lems_file(lems_instances_file_name)
    ls.include_lems_file(ampa_syn_filename, include_included=False)
    ls.include_lems_file(nmda_syn_filename, include_included=False)
    ls.include_neuroml2_file(net_file_name)
    # Specify Displays and Output Files
    # Details for saving output files
    basedir = '../data_r' + str(
        correlationRadius) + '/' if NADT == 0 else '../data_r' + str(
            correlationRadius) + '_NADT/'
    end_filename = str(N_syn) + '_{:.2f}'.format(f_mf) + '_' + str(
        run_num)  # Add parameter values to spike time filename
    # Save MF spike times under basedir + MF_spikes_ + end_filename
    eof0 = 'MFspikes_file'
    ls.create_event_output_file(eof0,
                                basedir + "MF_spikes_" + end_filename + ".dat")
    # ON MFs
    for i in range(mossySpikersPopON.size):
        ls.add_selection_to_event_output_file(
            eof0, mf_indices_ON[i], "%s[%i]" % (mossySpikersPopON.id, i),
            'spike')
    # OFF MFs
    for i in range(mossySpikersPopOFF.size):
        ls.add_selection_to_event_output_file(
            eof0, mf_indices_OFF[i], "%s[%i]" % (mossySpikersPopOFF.id, i),
            'spike')
    # Save GC spike times under basedir + GrC_spikes_ + end_filename
    eof1 = 'GrCspikes_file'
    ls.create_event_output_file(
        eof1, basedir + "GrC_spikes_" + end_filename + ".dat")
    #
    for i in range(GrCPop.size):
        ls.add_selection_to_event_output_file(eof1, i,
                                              "%s[%i]" % (GrCPop.id, i),
                                              'spike')
    #
    lems_file_name = ls.save_to_file()
    #
    if run:
        results = pynml.run_lems_with_jneuroml(lems_file_name,
                                               max_memory="8G",
                                               nogui=True,
                                               load_saved_data=False,
                                               plot=False)

        return results
コード例 #10
0
def generate_grc_layer_network(
        p_mf_ON,
        duration,
        dt,
        minimumISI,  # ms
        ONRate,  # Hz 
        OFFRate,  # Hz
        run=False):

    # Load connectivity matrix

    file = open('GCLconnectivity.pkl')
    p = pkl.load(file)
    conn_mat = p['conn_mat']
    N_mf, N_grc = conn_mat.shape
    assert (np.all(conn_mat.sum(
        axis=0) == 4)), 'Connectivity matrix is incorrect.'

    # Load GrC and MF rosette positions

    grc_pos = p['grc_pos']
    glom_pos = p['glom_pos']

    # Choose which mossy fibers are on, which are off

    N_mf_ON = int(N_mf * p_mf_ON)
    mf_indices_ON = random.sample(range(N_mf), N_mf_ON)
    mf_indices_ON.sort()

    N_mf_OFF = N_mf - N_mf_ON
    mf_indices_OFF = [x for x in range(N_mf) if x not in mf_indices_ON]
    mf_indices_OFF.sort()

    # load NeuroML components, LEMS components and LEMS componentTypes from external files

    ##spikeGeneratorRefPoisson is now a standard nml type...
    ##spike_generator_doc = pynml.read_lems_file(spike_generator_file_name)

    iaF_GrC = nml.IafRefCell(id="iaF_GrC",
                             refract="2ms",
                             C="3.22pF",
                             thresh="-40mV",
                             reset="-63mV",
                             leak_conductance="1.498nS",
                             leak_reversal="-79.67mV")

    ampa_syn_filename = "RothmanMFToGrCAMPA.xml"
    nmda_syn_filename = "RothmanMFToGrCNMDA.xml"

    rothmanMFToGrCAMPA_doc = pynml.read_lems_file(ampa_syn_filename)
    rothmanMFToGrCNMDA_doc = pynml.read_lems_file(nmda_syn_filename)

    # define some components from the componentTypes we just loaded
    ##spike_generator_ref_poisson_type = spike_generator_doc.component_types['spikeGeneratorRefPoisson']

    lems_instances_doc = lems.Model()
    spike_generator_ref_poisson_type_name = 'spikeGeneratorRefPoisson'

    spike_generator_on = lems.Component("mossySpikerON",
                                        spike_generator_ref_poisson_type_name)
    spike_generator_on.set_parameter("minimumISI", "%s ms" % minimumISI)
    spike_generator_on.set_parameter("averageRate", "%s Hz" % ONRate)
    lems_instances_doc.add(spike_generator_on)

    spike_generator_off = lems.Component(
        "mossySpikerOFF", spike_generator_ref_poisson_type_name)
    spike_generator_off.set_parameter("minimumISI", "%s ms" % minimumISI)
    spike_generator_off.set_parameter("averageRate", "%s Hz" % OFFRate)
    lems_instances_doc.add(spike_generator_off)

    rothmanMFToGrCAMPA = rothmanMFToGrCAMPA_doc.components[
        'RothmanMFToGrCAMPA'].id
    rothmanMFToGrCNMDA = rothmanMFToGrCNMDA_doc.components[
        'RothmanMFToGrCNMDA'].id

    # create populations
    GrCPop = nml.Population(id=iaF_GrC.id + "Pop",
                            component=iaF_GrC.id,
                            type="populationList",
                            size=N_grc)
    GrCPop.properties.append(nml.Property(tag='color', value='0 0 0.8'))
    GrCPop.properties.append(nml.Property(tag='radius', value=2))
    mossySpikersPopON = nml.Population(id=spike_generator_on.id + "Pop",
                                       component=spike_generator_on.id,
                                       type="populationList",
                                       size=N_mf_ON)
    mossySpikersPopON.properties.append(
        nml.Property(tag='color', value='0.8 0 0'))
    mossySpikersPopON.properties.append(nml.Property(tag='radius', value=2))
    mossySpikersPopOFF = nml.Population(id=spike_generator_off.id + "Pop",
                                        component=spike_generator_off.id,
                                        size=N_mf_OFF)
    mossySpikersPopOFF.properties.append(
        nml.Property(tag='color', value='0 0.8 0'))
    mossySpikersPopOFF.properties.append(nml.Property(tag='radius', value=2))

    # create network and add populations
    net = nml.Network(id="network")
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net_doc.iaf_ref_cells.append(iaF_GrC)
    net.populations.append(GrCPop)
    net.populations.append(mossySpikersPopON)
    net.populations.append(mossySpikersPopOFF)

    #net_doc.includes.append(nml.IncludeType(href=iaf_nml2_file_name))

    # Add locations for GCs

    for grc in range(N_grc):
        inst = nml.Instance(id=grc)
        GrCPop.instances.append(inst)
        inst.location = nml.Location(x=grc_pos[grc, 0],
                                     y=grc_pos[grc, 1],
                                     z=grc_pos[grc, 2])

    # ON MFs: locations and connectivity

    ONprojectionAMPA = nml.Projection(
        id="ONProjAMPA",
        presynaptic_population=mossySpikersPopON.id,
        postsynaptic_population=GrCPop.id,
        synapse=rothmanMFToGrCAMPA)
    ONprojectionNMDA = nml.Projection(
        id="ONProjNMDA",
        presynaptic_population=mossySpikersPopON.id,
        postsynaptic_population=GrCPop.id,
        synapse=rothmanMFToGrCNMDA)
    net.projections.append(ONprojectionAMPA)
    net.projections.append(ONprojectionNMDA)

    ix = 0
    for mf_ix_ON in range(N_mf_ON):
        mf_ix = mf_indices_ON[mf_ix_ON]
        inst = nml.Instance(id=mf_ix_ON)
        mossySpikersPopON.instances.append(inst)
        inst.location = nml.Location(x=glom_pos[mf_ix, 0],
                                     y=glom_pos[mf_ix, 1],
                                     z=glom_pos[mf_ix, 2])
        # find which granule cells are neighbors
        innervated_grcs = np.where(conn_mat[mf_ix, :] == 1)[0]
        for grc_ix in innervated_grcs:
            for synapse in [rothmanMFToGrCAMPA, rothmanMFToGrCNMDA]:
                connection = nml.Connection(
                    id=ix,
                    pre_cell_id='../{}/{}/{}'.format(mossySpikersPopON.id,
                                                     mf_ix_ON,
                                                     spike_generator_on.id),
                    post_cell_id='../{}/{}/{}'.format(GrCPop.id, grc_ix,
                                                      iaF_GrC.id))
                ONprojectionAMPA.connections.append(connection)
                ONprojectionNMDA.connections.append(connection)
                ix = ix + 1

    # OFF MFs: locations and connectivity

    OFFprojectionAMPA = nml.Projection(
        id="OFFProjAMPA",
        presynaptic_population=mossySpikersPopOFF.id,
        postsynaptic_population=GrCPop.id,
        synapse=rothmanMFToGrCAMPA)
    OFFprojectionNMDA = nml.Projection(
        id="OFFProjNMDA",
        presynaptic_population=mossySpikersPopOFF.id,
        postsynaptic_population=GrCPop.id,
        synapse=rothmanMFToGrCNMDA)
    net.projections.append(OFFprojectionAMPA)
    net.projections.append(OFFprojectionNMDA)

    ix = 0
    for mf_ix_OFF in range(N_mf_OFF):
        mf_ix = mf_indices_OFF[mf_ix_OFF]
        inst = nml.Instance(id=mf_ix_OFF)
        mossySpikersPopOFF.instances.append(inst)
        inst.location = nml.Location(x=glom_pos[mf_ix, 0],
                                     y=glom_pos[mf_ix, 1],
                                     z=glom_pos[mf_ix, 2])
        # find which granule cells are neighbors
        innervated_grcs = np.where(conn_mat[mf_ix, :] == 1)[0]
        for grc_ix in innervated_grcs:
            for synapse in [rothmanMFToGrCAMPA, rothmanMFToGrCNMDA]:
                connection = nml.Connection(
                    id=ix,
                    pre_cell_id='../{}/{}/{}'.format(mossySpikersPopOFF.id,
                                                     mf_ix_OFF,
                                                     spike_generator_on.id),
                    post_cell_id='../{}/{}/{}'.format(GrCPop.id, grc_ix,
                                                      iaF_GrC.id))
                OFFprojectionAMPA.connections.append(connection)
                OFFprojectionNMDA.connections.append(connection)
                ix = ix + 1

    # Write network to file
    net_file_name = 'OSBnet.nml'
    pynml.write_neuroml2_file(net_doc, net_file_name)

    # Write LEMS instances to file
    lems_instances_file_name = 'instances.xml'
    pynml.write_lems_file(lems_instances_doc,
                          lems_instances_file_name,
                          validate=False)

    # Create a LEMSSimulation to manage creation of LEMS file
    ls = LEMSSimulation(
        'sim', duration, dt,
        simulation_seed=123)  # int(np.round(1000*random.random())))

    # Point to network as target of simulation
    ls.assign_simulation_target(net.id)

    # Include generated/existing NeuroML2 files
    ###ls.include_lems_file(spike_generator_file_name, include_included=False)
    ls.include_lems_file(lems_instances_file_name)
    ls.include_lems_file(ampa_syn_filename, include_included=False)
    ls.include_lems_file(nmda_syn_filename, include_included=False)
    ls.include_neuroml2_file(net_file_name)

    # Specify Displays and Output Files

    basedir = ''

    eof0 = 'Volts_file'
    ls.create_event_output_file(eof0, basedir + "MF_spikes.dat")

    for i in range(mossySpikersPopON.size):
        ls.add_selection_to_event_output_file(
            eof0, mf_indices_ON[i], '{}/{}/{}'.format(mossySpikersPopON.id, i,
                                                      spike_generator_on.id),
            'spike')

    for i in range(mossySpikersPopOFF.size):
        ls.add_selection_to_event_output_file(
            eof0, mf_indices_OFF[i],
            '{}/{}/{}'.format(mossySpikersPopOFF.id, i,
                              spike_generator_on.id), 'spike')

    eof1 = 'GrCspike_file'
    ls.create_event_output_file(eof1, basedir + "GrC_spikes.dat")

    for i in range(GrCPop.size):
        ls.add_selection_to_event_output_file(
            eof1, i, '{}/{}/{}'.format(GrCPop.id, i, iaF_GrC.id), 'spike')

    lems_file_name = ls.save_to_file()

    if run:
        print('Running the generated LEMS file: %s for simulation of %sms' %
              (lems_file_name, duration))
        results = pynml.run_lems_with_jneuroml(lems_file_name,
                                               max_memory="8G",
                                               nogui=True,
                                               load_saved_data=False,
                                               plot=False)

        return results
コード例 #11
0
def mdf_to_neuroml(graph, save_to=None, format=None, run_duration_sec=2):

    print("Converting graph: %s to NeuroML" % (graph.id))

    net = neuromllite.Network(id=graph.id)
    net.notes = "NeuroMLlite export of {} graph: {}".format(
        format if format else "MDF",
        graph.id,
    )

    model = lems.Model()
    lems_definitions = "%s_lems_definitions.xml" % graph.id

    for node in graph.nodes:
        print("    Node: %s" % node.id)

        node_comp_type = "%s__definition" % node.id
        node_comp = "%s__instance" % node.id

        # Create the ComponentType which defines behaviour of the general class
        ct = lems.ComponentType(node_comp_type, extends="baseCellMembPotDL")
        ct.add(lems.Attachments("only_input_port", "basePointCurrentDL"))
        ct.dynamics.add(
            lems.DerivedVariable(name="V",
                                 dimension="none",
                                 value="0",
                                 exposure="V"))
        model.add(ct)

        # Define the Component - an instance of the ComponentType
        comp = lems.Component(node_comp, node_comp_type)
        model.add(comp)

        cell = neuromllite.Cell(id=node_comp,
                                lems_source_file=lems_definitions)
        net.cells.append(cell)

        pop = neuromllite.Population(
            id=node.id,
            size=1,
            component=cell.id,
            properties={
                "color": "0.2 0.2 0.2",
                "radius": 3
            },
        )
        net.populations.append(pop)

        if len(node.input_ports) > 1:
            raise Exception(
                "Currently only max 1 input port supported in NeuroML...")

        for ip in node.input_ports:
            ct.add(lems.Exposure(ip.id, "none"))
            ct.dynamics.add(
                lems.DerivedVariable(
                    name=ip.id,
                    dimension="none",
                    select="only_input_port[*]/I",
                    reduce="add",
                    exposure=ip.id,
                ))

        on_start = None

        for p in node.parameters:
            print("Converting %s" % p)
            if p.value is not None:
                try:
                    v_num = float(p.value)
                    ct.add(lems.Parameter(p.id, "none"))
                    comp.parameters[p.id] = v_num
                    print(comp.parameters[p.id])
                except Exception as e:

                    ct.add(lems.Exposure(p.id, "none"))
                    dv = lems.DerivedVariable(
                        name=p.id,
                        dimension="none",
                        value="%s" % (p.value),
                        exposure=p.id,
                    )
                    ct.dynamics.add(dv)

            elif p.function is not None:
                ct.add(lems.Exposure(p.id, "none"))
                func_info = mdf_functions[p.function]
                expr = func_info["expression_string"]
                expr2 = substitute_args(expr, p.args)
                for arg in p.args:
                    expr += ";{}={}".format(arg, p.args[arg])
                dv = lems.DerivedVariable(name=p.id,
                                          dimension="none",
                                          value="%s" % (expr2),
                                          exposure=p.id)
                ct.dynamics.add(dv)
            else:
                ct.add(lems.Exposure(p.id, "none"))
                ct.dynamics.add(
                    lems.StateVariable(name=p.id,
                                       dimension="none",
                                       exposure=p.id))
                if p.default_initial_value:
                    if on_start is None:
                        on_start = lems.OnStart()
                        ct.dynamics.add(on_start)
                    sa = lems.StateAssignment(
                        variable=p.id,
                        value=str(evaluate_expr(p.default_initial_value)))
                    on_start.actions.append(sa)

                if p.time_derivative:
                    td = lems.TimeDerivative(variable=p.id,
                                             value=p.time_derivative)
                    ct.dynamics.add(td)

        if len(node.output_ports) > 1:
            raise Exception(
                "Currently only max 1 output port supported in NeuroML...")

        for op in node.output_ports:
            ct.add(lems.Exposure(op.id, "none"))
            ct.dynamics.add(
                lems.DerivedVariable(name=op.id,
                                     dimension="none",
                                     value=op.value,
                                     exposure=op.id))
            only_output_port = "only_output_port"
            ct.add(lems.Exposure(only_output_port, "none"))
            ct.dynamics.add(
                lems.DerivedVariable(
                    name=only_output_port,
                    dimension="none",
                    value=op.id,
                    exposure=only_output_port,
                ))

    if len(graph.edges) > 0:

        model.add(
            lems.Include(
                os.path.join(os.path.dirname(__file__),
                             "syn_definitions.xml")))
        rsDL = neuromllite.Synapse(id="rsDL",
                                   lems_source_file=lems_definitions)
        net.synapses.append(rsDL)
        # syn_id = 'silentSyn'
        # silentSynDL = neuromllite.Synapse(id=syn_id, lems_source_file=lems_definitions)

    for edge in graph.edges:
        print(f"    Edge: {edge.id} connects {edge.sender} to {edge.receiver}")

        ssyn_id = "silentSyn_proj_%s" % edge.id
        ssyn_id = "silentSyn_proj_%s" % edge.id
        # ssyn_id = 'silentSynX'
        silentDLin = neuromllite.Synapse(id=ssyn_id,
                                         lems_source_file=lems_definitions)

        model.add(lems.Component(ssyn_id, "silentRateSynapseDL"))

        net.synapses.append(silentDLin)

        net.projections.append(
            neuromllite.Projection(
                id="proj_%s" % edge.id,
                presynaptic=edge.sender,
                postsynaptic=edge.receiver,
                synapse=rsDL.id,
                pre_synapse=silentDLin.id,
                type="continuousProjection",
                weight=1,
                random_connectivity=neuromllite.RandomConnectivity(
                    probability=1),
            ))

    # Much more todo...
    model.export_to_file(lems_definitions)

    print("Nml net: %s" % net)
    if save_to:
        new_file = net.to_json_file(save_to)
        print("Saved NML to: %s" % save_to)

    ################################################################################
    ###   Build Simulation object & save as JSON

    simtime = 1000 * run_duration_sec
    dt = 0.1
    sim = neuromllite.Simulation(
        id="Sim%s" % net.id,
        network=new_file,
        duration=simtime,
        dt=dt,
        seed=123,
        recordVariables={"OUTPUT": {
            "all": "*"
        }},
    )

    recordVariables = {}
    for node in graph.nodes:
        for ip in node.input_ports:
            if not ip.id in recordVariables:
                recordVariables[ip.id] = {}
            recordVariables[ip.id][node.id] = 0

        for p in node.parameters:
            if p.is_stateful():
                if not p.id in recordVariables:
                    recordVariables[p.id] = {}
                recordVariables[p.id][node.id] = 0

        for op in node.output_ports:
            if not op.id in recordVariables:
                recordVariables[op.id] = {}
            recordVariables[op.id][node.id] = 0

    sim.recordVariables = recordVariables
    if save_to:
        sf = sim.to_json_file()

        print("Saved Simulation to: %s" % sf)

    return net, sim
コード例 #12
0
    def handle_population(self,
                          population_id,
                          component,
                          size=-1,
                          component_obj=None,
                          properties={}):

        sizeInfo = " as yet unspecified size"
        if size >= 0:
            sizeInfo = ", size: " + str(size) + " cells"
        if component_obj:
            compInfo = " (%s)" % component_obj.__class__.__name__
        else:
            compInfo = ""

        print_v("Population: " + population_id + ", component: " + component +
                compInfo + sizeInfo)

        if size >= 0:
            for i in range(size):
                node_id = "%s_%i" % (population_id, i)
                node = {}
                node["type"] = {}
                node["name"] = node_id
                # node['type']['NeuroML'] = component

                comp = self.nl_network.get_child(component, "cells")
                base_dir = "./"  # for now...
                fname = locate_file(comp.lems_source_file, base_dir)
                model = lems.Model()
                model.import_from_file(fname)
                lems_comp = model.components.get(component)
                print("Cell: [%s] comes from %s and in Lems is: %s" %
                      (comp, fname, lems_comp))
                comp_type = lems_comp.type

                type = "The type of %s" % comp_type
                function = "The function of %s" % comp_type

                if comp_type == "pnlLinearFunctionTM":
                    function = "Linear"
                    type = "TransferMechanism"
                elif comp_type == "inputNode":
                    function = "Linear"
                    type = "TransferMechanism"
                elif comp_type == "pnlLogisticFunctionTM":
                    function = "Logistic"
                    type = "TransferMechanism"
                elif comp_type == "pnlExponentialFunctionTM":
                    function = "Exponential"
                    type = "TransferMechanism"
                elif comp_type == "pnlSimpleIntegratorMechanism":
                    function = "SimpleIntegrator"
                    type = "IntegratorMechanism"
                elif comp_type == "fnCell":
                    function = "FitzHughNagumoIntegrator"
                    type = "IntegratorMechanism"

                node["type"]["PNL"] = type
                node["type"]["generic"] = None
                node["parameters"] = {}
                node["parameters"]["PNL"] = {}
                node["functions"] = []
                func_info = {}
                func_info["type"] = {}
                func_info["type"]["generic"] = function
                func_info["name"] = "Function_%s" % function
                func_info["args"] = {}
                for p in lems_comp.parameters:
                    func_info["args"][p] = {}
                    func_info["args"][p]["type"] = "float"
                    func_info["args"][p]["source"] = "%s.input_ports.%s" % (
                        node_id, p)

                    if comp.parameters is not None and p in comp.parameters:
                        func_info["args"][p]["value"] = evaluate(
                            comp.parameters[p], self.nl_network.parameters)
                    else:
                        func_info["args"][p]["value"] = evaluate(
                            lems_comp.parameters[p]
                        )  # evaluate to ensure strings -> ints/floats etc

                node["functions"].append(func_info)
                self.bids_mdf_graph["nodes"][node_id] = node

            pop_node_id = "%s" % (population_id)
            pop_node = {}
            pop_node["type"] = {}
            pop_node["name"] = pop_node_id
            pop_node["type"]["NeuroML"] = component
            pop_node["parameters"] = {}
            pop_node["parameters"]["size"] = size
            pop_node["functions"] = {}
            self.bids_mdf_graph_hl["nodes"][pop_node_id] = pop_node