def make_plots(csv_file, index_col=None, title=None, cluster_levels=2): """ Function for making series of plots. Parameters ---------- csv_file : str Path to the csv_file to plot index_col : str, optional Name of the index column in csv_file title : str, optional Title of the dataset. cluster_levels : int (default=1) Number of levels for hierarchial clustering Returns ------- out : dict Dictionary containing html div for each plot """ ds = lds.CSVDataSet(csv_file, name=title, index_column=index_col) #Make plots and save as div location_heatmap = lpl.LocationHeatmap( ds, mode='div').plot(showticklabels=True) location_lines = lpl.LocationLines(ds, mode='div').plot(showticklabels=True) #Z-transform the data ds.D = ds.D.apply(zscore) #Make plots on transformed data histogram_heatmap = lpl.HistogramHeatmap( ds, mode='div').plot(showticklabels=True) scree_plot = lpl.ScreePlotter(ds, mode='div').plot() corr_matrix = lpl.CorrelationMatrix(ds, mode='div').plot(showticklabels=True) #HGMM plots cluster_ds = lcl.HGMMClustering(ds, levels=cluster_levels) hgmm_dendogram = lpl.HGMMClusterMeansDendrogram(cluster_ds, mode='div').plot() hgmm_pair_plot = lpl.HGMMPairsPlot(cluster_ds, mode='div').plot() hgmm_stacked_mean = lpl.HGMMStackedClusterMeansHeatmap( cluster_ds, mode='div').plot(showticklabels=True) hgmm_cluster_mean = lpl.HGMMClusterMeansLevelHeatmap( cluster_ds, mode='div').plot(showticklabels=True) hgmm_cluster_means = lpl.HGMMClusterMeansLevelLines( cluster_ds, mode='div').plot(showticklabels=True) out = { "Histogram Heatmap": histogram_heatmap, "Location Heatmap": location_heatmap, "Location Lines": location_lines, "Scree Plot": scree_plot, "Correlation Matrix": corr_matrix, "Hierarchical GMM Dendogram": hgmm_dendogram, "Pair Plot": hgmm_pair_plot, "Cluster Stacked Means": hgmm_stacked_mean, "Cluster Mean Heatmap": hgmm_cluster_mean, "Cluster Mean Lines": hgmm_cluster_means } return out
lpl.ScreePlotter(EEG_Embedded, mode="savediv", base_path=out_emb_base).plot() # In[15]: lpl.HGMMClusterMeansDendrogram(DM, mode="savediv", base_path=out_base).plot(level=2) lpl.HGMMClusterMeansDendrogram(EEG_Embedded, mode="savediv", base_path=out_emb_base).plot(level=2) # In[16]: lpl.HGMMStackedClusterMeansHeatmap(DM, mode="savediv", base_path=out_base).plot(level=2) lpl.HGMMStackedClusterMeansHeatmap(EEG_Embedded, mode="savediv", base_path=out_emb_base).plot(level=2) # In[17]: lpl.HGMMClusterMeansLevelLines(DM, mode="savediv", base_path=out_base).plot(level=2) lpl.HGMMClusterMeansLevelLines(EEG_Embedded, mode="savediv", base_path=out_emb_base).plot(level=2) # In[18]: lpl.ScreePlotter(DM, mode="savediv", base_path=out_base).plot() lpl.ScreePlotter(EEG_Embedded, mode="savediv", base_path=out_emb_base).plot()
lpl.EigenvectorHeatmap(HBN_Embedded, mode="savediv", base_path=out_base).plot() # In[ ]: lpl.HGMMPairsPlot(HBN_Embedded, mode="savediv", base_path=out_emb_base).plot(level=1) # In[ ]: lpl.HGMMClusterMeansDendrogram(HBN_Embedded, mode="savediv", base_path=out_emb_base).plot(level=1) # In[ ]: lpl.HGMMStackedClusterMeansHeatmap(HBN_Embedded, mode="savediv", base_path=out_emb_base).plot(level=4) # In[ ]: lpl.HGMMClusterMeansLevelHeatmap(HBN_Embedded, mode="savediv", base_path=out_emb_base).plot(level=4) # In[ ]: lpl.HGMMClusterMeansLevelLines(HBN_Embedded, mode="savediv", base_path=out_emb_base).plot(level=4)