コード例 #1
0
    def test_noise_map(self):
        noise_map = np.ones((self.numPix, self.numPix))
        kwargs_noise = {
            'image_data': np.zeros((self.numPix, self.numPix)),
            'exposure_time': 1,
            'background_rms': 1,
            'noise_map': noise_map,
            'verbose': True
        }
        noise = ImageNoise(**kwargs_noise)
        noise_map_out = noise.C_D
        npt.assert_almost_equal(noise_map_out, noise_map, decimal=8)

        noise_map_out = noise.C_D_model(model=np.ones((self.numPix,
                                                       self.numPix)))
        npt.assert_almost_equal(noise_map_out, noise_map, decimal=8)

        kwargs_noise = {
            'image_data': np.zeros((self.numPix, self.numPix)),
            'exposure_time': 1,
            'noise_map': noise_map,
            'verbose': True
        }
        noise = ImageNoise(**kwargs_noise)
        bkg = noise.background_rms
        npt.assert_almost_equal(bkg, np.median(noise_map))
コード例 #2
0
    def __init__(self,
                 image_data,
                 exposure_time=None,
                 background_rms=None,
                 noise_map=None,
                 ra_at_xy_0=0,
                 dec_at_xy_0=0,
                 transform_pix2angle=None,
                 ra_shift=0,
                 dec_shift=0):
        """

        :param image_data: 2d numpy array of the image data
        :param exposure_time: int or array of size the data; exposure time
        (common for all pixels or individually for each individual pixel)
        :param background_rms: root-mean-square value of Gaussian background noise
        :param noise_map: int or array of size the data; joint noise sqrt(variance) of each individual pixel.
        :param transform_pix2angle: 2x2 matrix, mapping of pixel to coordinate
        :param ra_at_xy_0: ra coordinate at pixel (0,0)
        :param dec_at_xy_0: dec coordinate at pixel (0,0)
        :param ra_shift: RA shift of pixel grid
        :param dec_shift: DEC shift of pixel grid
        """
        nx, ny = np.shape(image_data)
        self._data = image_data
        if transform_pix2angle is None:
            transform_pix2angle = np.array([[1, 0], [0, 1]])
        PixelGrid.__init__(self, nx, ny, transform_pix2angle,
                           ra_at_xy_0 + ra_shift, dec_at_xy_0 + dec_shift)
        ImageNoise.__init__(self,
                            image_data,
                            exposure_time=exposure_time,
                            background_rms=background_rms,
                            noise_map=noise_map,
                            verbose=False)
コード例 #3
0
    def setup(self):
        self.numPix = 10
        kwargs_noise = {'image_data': np.zeros((self.numPix, self.numPix)), 'exposure_time': 1, 'background_rms': 1,
                        'noise_map': None, 'verbose': True}
        self.Noise = ImageNoise(**kwargs_noise)

        kwargs_noise = {'image_data': np.zeros((self.numPix, self.numPix)), 'exposure_time': np.ones((self.numPix, self.numPix)), 'background_rms': 1,
                        'noise_map': None, 'verbose': True}
        noise = ImageNoise(**kwargs_noise)
コード例 #4
0
    def test_gradient_boost(self):
        kwargs_noise = {
            'image_data': np.zeros((self.numPix, self.numPix)),
            'exposure_time': 1000000000000,
            'background_rms': 1,
            'noise_map': None,
            'gradient_boost_factor': 1.,
            'verbose': True
        }
        noise = ImageNoise(**kwargs_noise)
        model = np.zeros((self.numPix, self.numPix))
        CD_zero = noise.C_D_model(model)

        model = np.ones((self.numPix, self.numPix))
        CD_one = noise.C_D_model(model)
        npt.assert_almost_equal(CD_zero, CD_one)
コード例 #5
0
    def test_raise(self):
        kwargs_noise = {'image_data': np.zeros((10, 10)), 'exposure_time': None,
                        'background_rms': None, 'noise_map': None, 'verbose': True}
        noise = ImageNoise(**kwargs_noise)

        with self.assertRaises(ValueError):
            out = noise.background_rms
        with self.assertRaises(ValueError):
            out = noise.exposure_map
コード例 #6
0
 def test_exposure_time(self):
     kwargs_noise = {
         'image_data': np.zeros((self.numPix, self.numPix)),
         'exposure_time': 0.,
         'background_rms': 1,
         'noise_map': None,
         'verbose': True
     }
     noise = ImageNoise(**kwargs_noise)
     exp_map = noise.exposure_map
     assert exp_map > 0