class TestGaussianKappaEllipse(object): """ test the Gaussian with Gaussian kappa """ def setup(self): self.multi = MultiGaussianKappaEllipse() self.single = GaussianEllipsePotential() def test_function(self): x, y = 1, 2 amp = 1 sigma = 1 e1, e2 = 0.1, -0.1 center_x, center_y = 1, 0 f_ = self.multi.function(x, y, amp=[amp], sigma=[sigma], e1=e1, e2=e2, center_x=center_x, center_y=center_y) f_single = self.single.function(x, y, amp=amp, sigma=sigma, e1=e1, e2=e2, center_x=center_x, center_y=center_y) npt.assert_almost_equal(f_, f_single, decimal=8) def test_derivatives(self): x, y = 1, 2 amp = 1 sigma = 1 e1, e2 = 0.1, -0.1 center_x, center_y = 1, 0 f_x, f_y = self.multi.derivatives(x, y, amp=[amp], sigma=[sigma], e1=e1, e2=e2, center_x=center_x, center_y=center_y) f_x_s, f_y_s = self.single.derivatives(x, y, amp=amp, sigma=sigma, e1=e1, e2=e2, center_x=center_x, center_y=center_y) npt.assert_almost_equal(f_x, f_x_s, decimal=8) npt.assert_almost_equal(f_y, f_y_s, decimal=8) def test_hessian(self): x, y = 1, 2 amp = 1 sigma = 1 e1, e2 = 0.1, -0.1 center_x, center_y = 1, 0 f_xx, f_yy, f_xy = self.multi.hessian(x, y, amp=[amp], sigma=[sigma], e1=e1, e2=e2, center_x=center_x, center_y=center_y) f_xx_s, f_yy_s, f_xy_s = self.single.hessian(x, y, amp=amp, sigma=sigma, e1=e1, e2=e2, center_x=center_x, center_y=center_y) npt.assert_almost_equal(f_xx, f_xx_s, decimal=8) npt.assert_almost_equal(f_yy, f_yy_s, decimal=8) npt.assert_almost_equal(f_xy, f_xy_s, decimal=8) def test_density_2d(self): x, y = 1, 2 amp = 1 sigma = 1 e1, e2 = 0.1, -0.1 center_x, center_y = 1, 0 f_ = self.multi.density_2d(x, y, amp=[amp], sigma=[sigma], e1=e1, e2=e2, center_x=center_x, center_y=center_y) f_single = self.single.density_2d(x, y, amp=amp, sigma=sigma, e1=e1, e2=e2, center_x=center_x, center_y=center_y) npt.assert_almost_equal(f_, f_single, decimal=8) def test_density(self): r = 1 amp = 1 sigma = 1 e1, e2 = 0.1, -0.1 f_ = self.multi.density(r, amp=[amp], sigma=[sigma], e1=e1, e2=e2) f_single = self.single.density(r, amp=amp, sigma=sigma, e1=e1, e2=e2) npt.assert_almost_equal(f_, f_single, decimal=8)
class MultiGaussianKappaEllipse(object): """ """ param_names = ['amp', 'sigma', 'e1', 'e2', 'center_x', 'center_y'] lower_limit_default = { 'amp': 0, 'sigma': 0, 'e1': -0.5, 'e2': -0.5, 'center_x': -100, 'center_y': -100 } upper_limit_default = { 'amp': 100, 'sigma': 100, 'e1': 0.5, 'e2': 0.5, 'center_x': 100, 'center_y': 100 } def __init__(self): self.gaussian_kappa = GaussianEllipsePotential() def function(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0, scale_factor=1): """ :param x: :param y: :param amp: :param sigma: :param center_x: :param center_y: :return: """ f_ = np.zeros_like(x, dtype=float) for i in range(len(amp)): f_ += self.gaussian_kappa.function(x, y, amp=scale_factor * amp[i], sigma=sigma[i], e1=e1, e2=e2, center_x=center_x, center_y=center_y) return f_ def derivatives(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0, scale_factor=1): """ :param x: :param y: :param amp: :param sigma: :param center_x: :param center_y: :return: """ f_x, f_y = np.zeros_like(x, dtype=float), np.zeros_like(x, dtype=float) for i in range(len(amp)): f_x_i, f_y_i = self.gaussian_kappa.derivatives(x, y, amp=scale_factor * amp[i], sigma=sigma[i], e1=e1, e2=e2, center_x=center_x, center_y=center_y) f_x += f_x_i f_y += f_y_i return f_x, f_y def hessian(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0, scale_factor=1): """ :param x: :param y: :param amp: :param sigma: :param center_x: :param center_y: :return: """ f_xx, f_yy, f_xy = np.zeros_like(x, dtype=float), np.zeros_like( x, dtype=float), np.zeros_like(x, dtype=float) for i in range(len(amp)): f_xx_i, f_yy_i, f_xy_i = self.gaussian_kappa.hessian( x, y, amp=scale_factor * amp[i], sigma=sigma[i], e1=e1, e2=e2, center_x=center_x, center_y=center_y) f_xx += f_xx_i f_yy += f_yy_i f_xy += f_xy_i return f_xx, f_yy, f_xy def density(self, r, amp, sigma, e1, e2, scale_factor=1): """ :param r: :param amp: :param sigma: :return: """ d_ = np.zeros_like(r, dtype=float) for i in range(len(amp)): d_ += self.gaussian_kappa.density(r, scale_factor * amp[i], sigma[i], e1, e2) return d_ def density_2d(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0, scale_factor=1): """ :param R: :param am: :param sigma_x: :param sigma_y: :return: """ d_3d = np.zeros_like(x, dtype=float) for i in range(len(amp)): d_3d += self.gaussian_kappa.density_2d(x, y, scale_factor * amp[i], sigma[i], e1, e2, center_x, center_y) return d_3d def mass_3d_lens(self, R, amp, sigma, e1, e2, scale_factor=1): """ :param R: :param amp: :param sigma: :return: """ mass_3d = np.zeros_like(R, dtype=float) for i in range(len(amp)): mass_3d += self.gaussian_kappa.mass_3d_lens( R, scale_factor * amp[i], sigma[i], e1, e2) return mass_3d