class TestHernquistEllipseCSE(object): """ tests the Gaussian methods """ def setup(self): self.hernquist = Hernquist() self.hernquist_cse = HernquistEllipseCSE() def test_function(self): x = np.linspace(0.01, 2, 10) y = np.zeros_like(x) kwargs = {'sigma0': 2, 'Rs': 2, 'center_x': 0, 'center_y': 0} f_nfw = self.hernquist.function(x, y, **kwargs) f_cse = self.hernquist_cse.function(x, y, e1=0, e2=0, **kwargs) npt.assert_almost_equal(f_cse / f_nfw, 1, decimal=5) def test_derivatives(self): x = np.linspace(0.01, 2, 10) y = np.zeros_like(x) kwargs = {'sigma0': 0.5, 'Rs': 2, 'center_x': 0, 'center_y': 0} f_x_nfw, f_y_nfw = self.hernquist.derivatives(x, y, **kwargs) f_x_cse, f_y_cse = self.hernquist_cse.derivatives(x, y, e1=0, e2=0, **kwargs) npt.assert_almost_equal(f_x_cse, f_x_nfw, decimal=5) npt.assert_almost_equal(f_y_cse, f_y_nfw, decimal=5) def test_hessian(self): x = np.linspace(0.01, 5, 30) y = np.zeros_like(x) kwargs = {'sigma0': 0.5, 'Rs': 2, 'center_x': 0, 'center_y': 0} f_xx_nfw, f_xy_nfw, f_yx_nfw, f_yy_nfw = self.hernquist.hessian(x, y, **kwargs) f_xx_cse, f_xy_cse, f_yx_cse, f_yy_cse = self.hernquist_cse.hessian(x, y, e1=0, e2=0, **kwargs) npt.assert_almost_equal(f_xx_cse / f_xx_nfw, 1, decimal=2) npt.assert_almost_equal(f_xy_cse, f_xy_nfw, decimal=5) npt.assert_almost_equal(f_yx_cse, f_yx_nfw, decimal=5) npt.assert_almost_equal(f_yy_cse, f_yy_nfw, decimal=5) def test_mass_3d_lens(self): R = 1 Rs = 3 alpha_Rs = 1 m_3d_nfw = self.hernquist.mass_3d_lens(R, Rs, alpha_Rs) m_3d_cse = self.hernquist_cse.mass_3d_lens(R, Rs, alpha_Rs) npt.assert_almost_equal(m_3d_nfw, m_3d_cse, decimal=8)
class TestHernquist(object): def setup(self): self.profile = Hernquist() def test_function(self): x = np.array([1]) y = np.array([2]) Rs = 1. sigma0 = 0.5 values = self.profile.function(x, y, sigma0, Rs) npt.assert_almost_equal(values[0], 0.66514613455415028, decimal=8) x = np.array([0]) y = np.array([0]) Rs = 1. sigma0 = 0.5 values = self.profile.function(x, y, sigma0, Rs) npt.assert_almost_equal(values[0], 0, decimal=6) x = np.array([2, 3, 4]) y = np.array([1, 1, 1]) values = self.profile.function(x, y, sigma0, Rs) npt.assert_almost_equal(values[0], 0.66514613455415028, decimal=8) npt.assert_almost_equal(values[1], 0.87449395673649566, decimal=8) npt.assert_almost_equal(values[2], 1.0549139073851708, decimal=8) def test_derivatives(self): x = 1 y = 2 Rs = 1. sigma0 = 0.5 f_x, f_y = self.profile.derivatives(x, y, sigma0, Rs) npt.assert_almost_equal(f_x, 0.11160641027573866, decimal=8) npt.assert_almost_equal(f_y, 0.22321282055147731, decimal=8) x = np.array([0]) y = np.array([0]) f_x, f_y = self.profile.derivatives(x, y, sigma0, Rs) npt.assert_almost_equal(f_x, 0, decimal=8) npt.assert_almost_equal(f_y, 0, decimal=8) def test_hessian(self): x = np.array([1]) y = np.array([2]) Rs = 1. sigma0 = 0.5 f_xx, f_xy, f_yx, f_yy = self.profile.hessian(x, y, sigma0, Rs) npt.assert_almost_equal(f_xx[0], 0.0779016004481825, decimal=6) npt.assert_almost_equal(f_yy[0], -0.023212809452388683, decimal=6) npt.assert_almost_equal(f_xy[0], -0.0674096084507525, decimal=6) npt.assert_almost_equal(f_xy, f_yx, decimal=8) def test_mass_tot(self): rho0 = 1 Rs = 3 m_tot = self.profile.mass_tot(rho0, Rs) npt.assert_almost_equal(m_tot, 169.64600329384882, decimal=6) def test_grav_pot(self): x, y = 1, 0 rho0 = 1 Rs = 3 grav_pot = self.profile.grav_pot(x, y, rho0, Rs, center_x=0, center_y=0) npt.assert_almost_equal(grav_pot, 42.411500823462205, decimal=8) def test_sigma0_definition(self): Rs = 2. sigma0 = 0.5 f_x, f_y = self.profile.derivatives(Rs, 0, sigma0, Rs) alpha = f_x npt.assert_almost_equal(alpha, 2 / 3. * sigma0 * Rs, decimal=5)