class TestP_JAFFW(object): """ tests the Gaussian methods """ def setup(self): self.profile = PJaffe_Ellipse() def test_function(self): x = np.array([1]) y = np.array([2]) sigma0 = 1. Ra, Rs = 0.5, 0.8 q, phi_G = 0.8, 0 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) values = self.profile.function(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert values[0] == 0.9060417038170876 x = np.array([0]) y = np.array([0]) values = self.profile.function(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert values[0] == 0.20267440905756931 x = np.array([2, 3, 4]) y = np.array([1, 1, 1]) values = self.profile.function(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert values[0] == 0.83655317460063972 assert values[1] == 1.0291644086604779 assert values[2] == 1.1938735098090378 def test_derivatives(self): x = np.array([1]) y = np.array([2]) sigma0 = 1. Ra, Rs = 0.5, 0.8 q, phi_G = 0.8, 0 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.profile.derivatives(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert f_x[0] == 0.084067857192459253 assert f_y[0] == 0.25220357157737772 x = np.array([0]) y = np.array([0]) f_x, f_y = self.profile.derivatives(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert f_x[0] == 0 assert f_y[0] == 0 x = np.array([1, 3, 4]) y = np.array([2, 1, 1]) values = self.profile.derivatives(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert values[0][0] == 0.084067857192459253 assert values[1][0] == 0.25220357157737772 assert values[0][1] == 0.17861253965407037 assert values[1][1] == 0.08930626982703517 def test_hessian(self): x = np.array([1]) y = np.array([2]) sigma0 = 1. Ra, Rs = 0.5, 0.8 q, phi_G = 0.8, 0 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_xx, f_xy, f_yx, f_yy = self.profile.hessian(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert f_xx[0] == 0.064049581333103234 assert f_yy[0] == -0.054062473386906618 assert f_xy[0] == -0.060054723013958089 npt.assert_almost_equal(f_xy, f_yx, decimal=6) x = np.array([1, 3, 4]) y = np.array([2, 1, 1]) values = self.profile.hessian(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert values[0][0] == 0.064049581333103234 assert values[3][0] == -0.054062473386906618 assert values[1][0] == -0.060054723013958089 assert values[0][1] == -0.028967667070611824 assert values[3][1] == 0.06717994677218897 assert values[1][1] == -0.04425260183293922 def test_mass_3d_lens(self): mass = self.profile.mass_3d_lens(r=1, sigma0=1, Ra=0.5, Rs=0.8, e1=0, e2=0) npt.assert_almost_equal(mass, 0.87077306005349242, decimal=8)
def setup(self): self.profile = PJaffe_Ellipse()
def _import_class(lens_type, custom_class, z_lens=None, z_source=None): """ :param lens_type: string, lens model type :param custom_class: custom class :param z_lens: lens redshift # currently only used in NFW_MC model as this is redshift dependent :param z_source: source redshift # currently only used in NFW_MC model as this is redshift dependent :return: class instance of the lens model type """ if lens_type == 'SHIFT': from lenstronomy.LensModel.Profiles.alpha_shift import Shift return Shift() elif lens_type == 'SHEAR': from lenstronomy.LensModel.Profiles.shear import Shear return Shear() elif lens_type == 'SHEAR_GAMMA_PSI': from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi return ShearGammaPsi() elif lens_type == 'CONVERGENCE': from lenstronomy.LensModel.Profiles.convergence import Convergence return Convergence() elif lens_type == 'FLEXION': from lenstronomy.LensModel.Profiles.flexion import Flexion return Flexion() elif lens_type == 'FLEXIONFG': from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg return Flexionfg() elif lens_type == 'POINT_MASS': from lenstronomy.LensModel.Profiles.point_mass import PointMass return PointMass() elif lens_type == 'SIS': from lenstronomy.LensModel.Profiles.sis import SIS return SIS() elif lens_type == 'SIS_TRUNCATED': from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate return SIS_truncate() elif lens_type == 'SIE': from lenstronomy.LensModel.Profiles.sie import SIE return SIE() elif lens_type == 'SPP': from lenstronomy.LensModel.Profiles.spp import SPP return SPP() elif lens_type == 'NIE': from lenstronomy.LensModel.Profiles.nie import NIE return NIE() elif lens_type == 'NIE_SIMPLE': from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis return NIEMajorAxis() elif lens_type == 'CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import Chameleon return Chameleon() elif lens_type == 'DOUBLE_CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon return DoubleChameleon() elif lens_type == 'TRIPLE_CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon return TripleChameleon() elif lens_type == 'SPEP': from lenstronomy.LensModel.Profiles.spep import SPEP return SPEP() elif lens_type == 'SPEMD': from lenstronomy.LensModel.Profiles.spemd import SPEMD return SPEMD() elif lens_type == 'SPEMD_SMOOTH': from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH return SPEMD_SMOOTH() elif lens_type == 'NFW': from lenstronomy.LensModel.Profiles.nfw import NFW return NFW() elif lens_type == 'NFW_ELLIPSE': from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE return NFW_ELLIPSE() elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC': from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec return NFWEllipseGaussDec() elif lens_type == 'TNFW': from lenstronomy.LensModel.Profiles.tnfw import TNFW return TNFW() elif lens_type == 'CNFW': from lenstronomy.LensModel.Profiles.cnfw import CNFW return CNFW() elif lens_type == 'CNFW_ELLIPSE': from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE return CNFW_ELLIPSE() elif lens_type == 'CTNFW_GAUSS_DEC': from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec return CTNFWGaussDec() elif lens_type == 'NFW_MC': from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC return NFWMC(z_lens=z_lens, z_source=z_source) elif lens_type == 'SERSIC': from lenstronomy.LensModel.Profiles.sersic import Sersic return Sersic() elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL': from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse return SersicEllipse() elif lens_type == 'SERSIC_ELLIPSE_KAPPA': from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa return SersicEllipseKappa() elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC': from lenstronomy.LensModel.Profiles.gauss_decomposition \ import SersicEllipseGaussDec return SersicEllipseGaussDec() elif lens_type == 'PJAFFE': from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe return PJaffe() elif lens_type == 'PJAFFE_ELLIPSE': from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse return PJaffe_Ellipse() elif lens_type == 'HERNQUIST': from lenstronomy.LensModel.Profiles.hernquist import Hernquist return Hernquist() elif lens_type == 'HERNQUIST_ELLIPSE': from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse return Hernquist_Ellipse() elif lens_type == 'GAUSSIAN': from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian return Gaussian() elif lens_type == 'GAUSSIAN_KAPPA': from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa return GaussianKappa() elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA': from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa return GaussianEllipseKappa() elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL': from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential return GaussianEllipsePotential() elif lens_type == 'MULTI_GAUSSIAN_KAPPA': from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa return MultiGaussianKappa() elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE': from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse return MultiGaussianKappaEllipse() elif lens_type == 'INTERPOL': from lenstronomy.LensModel.Profiles.interpol import Interpol return Interpol() elif lens_type == 'INTERPOL_SCALED': from lenstronomy.LensModel.Profiles.interpol import InterpolScaled return InterpolScaled() elif lens_type == 'SHAPELETS_POLAR': from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets return PolarShapelets() elif lens_type == 'SHAPELETS_CART': from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets return CartShapelets() elif lens_type == 'DIPOLE': from lenstronomy.LensModel.Profiles.dipole import Dipole return Dipole() elif lens_type == 'CURVED_ARC': from lenstronomy.LensModel.Profiles.curved_arc import CurvedArc return CurvedArc() elif lens_type == 'ARC_PERT': from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations return ArcPerturbations() elif lens_type == 'coreBURKERT': from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert return CoreBurkert() elif lens_type == 'CORED_DENSITY': from lenstronomy.LensModel.Profiles.cored_density import CoredDensity return CoredDensity() elif lens_type == 'CORED_DENSITY_2': from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2 return CoredDensity2() elif lens_type == 'CORED_DENSITY_MST': from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST return CoredDensityMST(profile_type='CORED_DENSITY') elif lens_type == 'CORED_DENSITY_2_MST': from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST return CoredDensityMST(profile_type='CORED_DENSITY_2') elif lens_type == 'NumericalAlpha': from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha return NumericalAlpha(custom_class) else: raise ValueError('%s is not a valid lens model' % lens_type)
def __init__(self, lens_model_list, **kwargs): """ :param lens_model_list: list of strings with lens model names :param foreground_shear: bool, when True, models a foreground non-linear shear distortion """ self.func_list = [] self._foreground_shear = False for i, lens_type in enumerate(lens_model_list): if lens_type == 'SHEAR': from lenstronomy.LensModel.Profiles.external_shear import ExternalShear self.func_list.append(ExternalShear()) elif lens_type == 'CONVERGENCE': from lenstronomy.LensModel.Profiles.mass_sheet import MassSheet self.func_list.append(MassSheet()) elif lens_type == 'FLEXION': from lenstronomy.LensModel.Profiles.flexion import Flexion self.func_list.append(Flexion()) elif lens_type == 'POINT_MASS': from lenstronomy.LensModel.Profiles.point_mass import PointMass self.func_list.append(PointMass()) elif lens_type == 'SIS': from lenstronomy.LensModel.Profiles.sis import SIS self.func_list.append(SIS()) elif lens_type == 'SIS_TRUNCATED': from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate self.func_list.append(SIS_truncate()) elif lens_type == 'SIE': from lenstronomy.LensModel.Profiles.sie import SIE self.func_list.append(SIE()) elif lens_type == 'SPP': from lenstronomy.LensModel.Profiles.spp import SPP self.func_list.append(SPP()) elif lens_type == 'NIE': from lenstronomy.LensModel.Profiles.nie import NIE self.func_list.append(NIE()) elif lens_type == 'NIE_SIMPLE': from lenstronomy.LensModel.Profiles.nie import NIE_simple self.func_list.append(NIE_simple()) elif lens_type == 'CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import Chameleon self.func_list.append(Chameleon()) elif lens_type == 'DOUBLE_CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon self.func_list.append(DoubleChameleon()) elif lens_type == 'SPEP': from lenstronomy.LensModel.Profiles.spep import SPEP self.func_list.append(SPEP()) elif lens_type == 'SPEMD': from lenstronomy.LensModel.Profiles.spemd import SPEMD self.func_list.append(SPEMD()) elif lens_type == 'SPEMD_SMOOTH': from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH self.func_list.append(SPEMD_SMOOTH()) elif lens_type == 'NFW': from lenstronomy.LensModel.Profiles.nfw import NFW self.func_list.append(NFW(**kwargs)) elif lens_type == 'NFW_ELLIPSE': from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE self.func_list.append( NFW_ELLIPSE(interpol=False, num_interp_X=1000, max_interp_X=100)) elif lens_type == 'TNFW': from lenstronomy.LensModel.Profiles.tnfw import TNFW self.func_list.append(TNFW()) elif lens_type == 'SERSIC': from lenstronomy.LensModel.Profiles.sersic import Sersic self.func_list.append(Sersic()) elif lens_type == 'SERSIC_ELLIPSE': from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse self.func_list.append(SersicEllipse()) elif lens_type == 'PJAFFE': from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe self.func_list.append(PJaffe()) elif lens_type == 'PJAFFE_ELLIPSE': from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse self.func_list.append(PJaffe_Ellipse()) elif lens_type == 'HERNQUIST': from lenstronomy.LensModel.Profiles.hernquist import Hernquist self.func_list.append(Hernquist()) elif lens_type == 'HERNQUIST_ELLIPSE': from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse self.func_list.append(Hernquist_Ellipse()) elif lens_type == 'GAUSSIAN': from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian self.func_list.append(Gaussian()) elif lens_type == 'GAUSSIAN_KAPPA': from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa self.func_list.append(GaussianKappa()) elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE': from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse self.func_list.append(GaussianKappaEllipse()) elif lens_type == 'MULTI_GAUSSIAN_KAPPA': from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa self.func_list.append(MultiGaussianKappa()) elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE': from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse self.func_list.append(MultiGaussianKappaEllipse()) elif lens_type == 'INTERPOL': from lenstronomy.LensModel.Profiles.interpol import Interpol_func self.func_list.append( Interpol_func(grid=False, min_grid_number=100)) elif lens_type == 'INTERPOL_SCALED': from lenstronomy.LensModel.Profiles.interpol import Interpol_func_scaled self.func_list.append( Interpol_func_scaled(grid=False, min_grid_number=100)) elif lens_type == 'SHAPELETS_POLAR': from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets self.func_list.append(PolarShapelets()) elif lens_type == 'SHAPELETS_CART': from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets self.func_list.append(CartShapelets()) elif lens_type == 'DIPOLE': from lenstronomy.LensModel.Profiles.dipole import Dipole self.func_list.append(Dipole()) elif lens_type == 'FOREGROUND_SHEAR': from lenstronomy.LensModel.Profiles.external_shear import ExternalShear self.func_list.append(ExternalShear()) self._foreground_shear = True self._foreground_shear_idex = i else: raise ValueError('%s is not a valid lens model' % lens_type) self._model_list = lens_model_list
def _import_class(self, lens_type, i, custom_class): if lens_type == 'SHIFT': from lenstronomy.LensModel.Profiles.alpha_shift import Shift return Shift() elif lens_type == 'SHEAR': from lenstronomy.LensModel.Profiles.shear import Shear return Shear() elif lens_type == 'CONVERGENCE': from lenstronomy.LensModel.Profiles.convergence import Convergence return Convergence() elif lens_type == 'FLEXION': from lenstronomy.LensModel.Profiles.flexion import Flexion return Flexion() elif lens_type == 'POINT_MASS': from lenstronomy.LensModel.Profiles.point_mass import PointMass return PointMass() elif lens_type == 'SIS': from lenstronomy.LensModel.Profiles.sis import SIS return SIS() elif lens_type == 'SIS_TRUNCATED': from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate return SIS_truncate() elif lens_type == 'SIE': from lenstronomy.LensModel.Profiles.sie import SIE return SIE() elif lens_type == 'SPP': from lenstronomy.LensModel.Profiles.spp import SPP return SPP() elif lens_type == 'NIE': from lenstronomy.LensModel.Profiles.nie import NIE return NIE() elif lens_type == 'NIE_SIMPLE': from lenstronomy.LensModel.Profiles.nie import NIE_simple return NIE_simple() elif lens_type == 'CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import Chameleon return Chameleon() elif lens_type == 'DOUBLE_CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon return DoubleChameleon() elif lens_type == 'SPEP': from lenstronomy.LensModel.Profiles.spep import SPEP return SPEP() elif lens_type == 'SPEMD': from lenstronomy.LensModel.Profiles.spemd import SPEMD return SPEMD() elif lens_type == 'SPEMD_SMOOTH': from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH return SPEMD_SMOOTH() elif lens_type == 'NFW': from lenstronomy.LensModel.Profiles.nfw import NFW return NFW() elif lens_type == 'NFW_ELLIPSE': from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE return NFW_ELLIPSE() elif lens_type == 'TNFW': from lenstronomy.LensModel.Profiles.tnfw import TNFW return TNFW() elif lens_type == 'CNFW': from lenstronomy.LensModel.Profiles.cnfw import CNFW return CNFW() elif lens_type == 'SERSIC': from lenstronomy.LensModel.Profiles.sersic import Sersic return Sersic() elif lens_type == 'SERSIC_ELLIPSE': from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse return SersicEllipse() elif lens_type == 'PJAFFE': from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe return PJaffe() elif lens_type == 'PJAFFE_ELLIPSE': from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse return PJaffe_Ellipse() elif lens_type == 'HERNQUIST': from lenstronomy.LensModel.Profiles.hernquist import Hernquist return Hernquist() elif lens_type == 'HERNQUIST_ELLIPSE': from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse return Hernquist_Ellipse() elif lens_type == 'GAUSSIAN': from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian return Gaussian() elif lens_type == 'GAUSSIAN_KAPPA': from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa return GaussianKappa() elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE': from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse return GaussianKappaEllipse() elif lens_type == 'MULTI_GAUSSIAN_KAPPA': from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa return MultiGaussianKappa() elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE': from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse return MultiGaussianKappaEllipse() elif lens_type == 'INTERPOL': from lenstronomy.LensModel.Profiles.interpol import Interpol return Interpol(grid=False, min_grid_number=100) elif lens_type == 'INTERPOL_SCALED': from lenstronomy.LensModel.Profiles.interpol import InterpolScaled return InterpolScaled() elif lens_type == 'SHAPELETS_POLAR': from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets return PolarShapelets() elif lens_type == 'SHAPELETS_CART': from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets return CartShapelets() elif lens_type == 'DIPOLE': from lenstronomy.LensModel.Profiles.dipole import Dipole return Dipole() elif lens_type == 'FOREGROUND_SHEAR': from lenstronomy.LensModel.Profiles.shear import Shear self._foreground_shear = True self._foreground_shear_idex = i return Shear() elif lens_type == 'coreBURKERT': from lenstronomy.LensModel.Profiles.coreBurkert import coreBurkert return coreBurkert() elif lens_type == 'NumericalAlpha': from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha return NumericalAlpha(custom_class[i]) else: raise ValueError('%s is not a valid lens model' % lens_type)
def _import_class(lens_type, custom_class, kwargs_interp, z_lens=None, z_source=None): """ :param lens_type: string, lens model type :param custom_class: custom class :param z_lens: lens redshift # currently only used in NFW_MC model as this is redshift dependent :param z_source: source redshift # currently only used in NFW_MC model as this is redshift dependent :param kwargs_interp: interpolation keyword arguments specifying the numerics. See description in the Interpolate() class. Only applicable for 'INTERPOL' and 'INTERPOL_SCALED' models. :return: class instance of the lens model type """ if lens_type == 'SHIFT': from lenstronomy.LensModel.Profiles.constant_shift import Shift return Shift() elif lens_type == 'NIE_POTENTIAL': from lenstronomy.LensModel.Profiles.nie_potential import NIE_POTENTIAL return NIE_POTENTIAL() elif lens_type == 'CONST_MAG': from lenstronomy.LensModel.Profiles.const_mag import ConstMag return ConstMag() elif lens_type == 'SHEAR': from lenstronomy.LensModel.Profiles.shear import Shear return Shear() elif lens_type == 'SHEAR_GAMMA_PSI': from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi return ShearGammaPsi() elif lens_type == 'SHEAR_REDUCED': from lenstronomy.LensModel.Profiles.shear import ShearReduced return ShearReduced() elif lens_type == 'CONVERGENCE': from lenstronomy.LensModel.Profiles.convergence import Convergence return Convergence() elif lens_type == 'HESSIAN': from lenstronomy.LensModel.Profiles.hessian import Hessian return Hessian() elif lens_type == 'FLEXION': from lenstronomy.LensModel.Profiles.flexion import Flexion return Flexion() elif lens_type == 'FLEXIONFG': from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg return Flexionfg() elif lens_type == 'POINT_MASS': from lenstronomy.LensModel.Profiles.point_mass import PointMass return PointMass() elif lens_type == 'SIS': from lenstronomy.LensModel.Profiles.sis import SIS return SIS() elif lens_type == 'SIS_TRUNCATED': from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate return SIS_truncate() elif lens_type == 'SIE': from lenstronomy.LensModel.Profiles.sie import SIE return SIE() elif lens_type == 'SPP': from lenstronomy.LensModel.Profiles.spp import SPP return SPP() elif lens_type == 'NIE': from lenstronomy.LensModel.Profiles.nie import NIE return NIE() elif lens_type == 'NIE_SIMPLE': from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis return NIEMajorAxis() elif lens_type == 'CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import Chameleon return Chameleon() elif lens_type == 'DOUBLE_CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon return DoubleChameleon() elif lens_type == 'TRIPLE_CHAMELEON': from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon return TripleChameleon() elif lens_type == 'SPEP': from lenstronomy.LensModel.Profiles.spep import SPEP return SPEP() elif lens_type == 'PEMD': from lenstronomy.LensModel.Profiles.pemd import PEMD return PEMD() elif lens_type == 'SPEMD': from lenstronomy.LensModel.Profiles.spemd import SPEMD return SPEMD() elif lens_type == 'EPL': from lenstronomy.LensModel.Profiles.epl import EPL return EPL() elif lens_type == 'EPL_NUMBA': from lenstronomy.LensModel.Profiles.epl_numba import EPL_numba return EPL_numba() elif lens_type == 'SPL_CORE': from lenstronomy.LensModel.Profiles.splcore import SPLCORE return SPLCORE() elif lens_type == 'NFW': from lenstronomy.LensModel.Profiles.nfw import NFW return NFW() elif lens_type == 'NFW_ELLIPSE': from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE return NFW_ELLIPSE() elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC': from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec return NFWEllipseGaussDec() elif lens_type == 'NFW_ELLIPSE_CSE': from lenstronomy.LensModel.Profiles.nfw_ellipse_cse import NFW_ELLIPSE_CSE return NFW_ELLIPSE_CSE() elif lens_type == 'TNFW': from lenstronomy.LensModel.Profiles.tnfw import TNFW return TNFW() elif lens_type == 'TNFW_ELLIPSE': from lenstronomy.LensModel.Profiles.tnfw_ellipse import TNFW_ELLIPSE return TNFW_ELLIPSE() elif lens_type == 'CNFW': from lenstronomy.LensModel.Profiles.cnfw import CNFW return CNFW() elif lens_type == 'CNFW_ELLIPSE': from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE return CNFW_ELLIPSE() elif lens_type == 'CTNFW_GAUSS_DEC': from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec return CTNFWGaussDec() elif lens_type == 'NFW_MC': from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC return NFWMC(z_lens=z_lens, z_source=z_source) elif lens_type == 'SERSIC': from lenstronomy.LensModel.Profiles.sersic import Sersic return Sersic() elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL': from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse return SersicEllipse() elif lens_type == 'SERSIC_ELLIPSE_KAPPA': from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa return SersicEllipseKappa() elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC': from lenstronomy.LensModel.Profiles.gauss_decomposition import SersicEllipseGaussDec return SersicEllipseGaussDec() elif lens_type == 'PJAFFE': from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe return PJaffe() elif lens_type == 'PJAFFE_ELLIPSE': from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse return PJaffe_Ellipse() elif lens_type == 'HERNQUIST': from lenstronomy.LensModel.Profiles.hernquist import Hernquist return Hernquist() elif lens_type == 'HERNQUIST_ELLIPSE': from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse return Hernquist_Ellipse() elif lens_type == 'HERNQUIST_ELLIPSE_CSE': from lenstronomy.LensModel.Profiles.hernquist_ellipse_cse import HernquistEllipseCSE return HernquistEllipseCSE() elif lens_type == 'GAUSSIAN': from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian return Gaussian() elif lens_type == 'GAUSSIAN_KAPPA': from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa return GaussianKappa() elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA': from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa return GaussianEllipseKappa() elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL': from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential return GaussianEllipsePotential() elif lens_type == 'MULTI_GAUSSIAN_KAPPA': from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa return MultiGaussianKappa() elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE': from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse return MultiGaussianKappaEllipse() elif lens_type == 'INTERPOL': from lenstronomy.LensModel.Profiles.interpol import Interpol return Interpol(**kwargs_interp) elif lens_type == 'INTERPOL_SCALED': from lenstronomy.LensModel.Profiles.interpol import InterpolScaled return InterpolScaled(**kwargs_interp) elif lens_type == 'SHAPELETS_POLAR': from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets return PolarShapelets() elif lens_type == 'SHAPELETS_CART': from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets return CartShapelets() elif lens_type == 'DIPOLE': from lenstronomy.LensModel.Profiles.dipole import Dipole return Dipole() elif lens_type == 'CURVED_ARC_CONST': from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConst return CurvedArcConst() elif lens_type == 'CURVED_ARC_CONST_MST': from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConstMST return CurvedArcConstMST() elif lens_type == 'CURVED_ARC_SPP': from lenstronomy.LensModel.Profiles.curved_arc_spp import CurvedArcSPP return CurvedArcSPP() elif lens_type == 'CURVED_ARC_SIS_MST': from lenstronomy.LensModel.Profiles.curved_arc_sis_mst import CurvedArcSISMST return CurvedArcSISMST() elif lens_type == 'CURVED_ARC_SPT': from lenstronomy.LensModel.Profiles.curved_arc_spt import CurvedArcSPT return CurvedArcSPT() elif lens_type == 'CURVED_ARC_TAN_DIFF': from lenstronomy.LensModel.Profiles.curved_arc_tan_diff import CurvedArcTanDiff return CurvedArcTanDiff() elif lens_type == 'ARC_PERT': from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations return ArcPerturbations() elif lens_type == 'coreBURKERT': from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert return CoreBurkert() elif lens_type == 'CORED_DENSITY': from lenstronomy.LensModel.Profiles.cored_density import CoredDensity return CoredDensity() elif lens_type == 'CORED_DENSITY_2': from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2 return CoredDensity2() elif lens_type == 'CORED_DENSITY_EXP': from lenstronomy.LensModel.Profiles.cored_density_exp import CoredDensityExp return CoredDensityExp() elif lens_type == 'CORED_DENSITY_MST': from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST return CoredDensityMST(profile_type='CORED_DENSITY') elif lens_type == 'CORED_DENSITY_2_MST': from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST return CoredDensityMST(profile_type='CORED_DENSITY_2') elif lens_type == 'CORED_DENSITY_EXP_MST': from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST return CoredDensityMST(profile_type='CORED_DENSITY_EXP') elif lens_type == 'NumericalAlpha': from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha return NumericalAlpha(custom_class) elif lens_type == 'MULTIPOLE': from lenstronomy.LensModel.Profiles.multipole import Multipole return Multipole() elif lens_type == 'CSE': from lenstronomy.LensModel.Profiles.cored_steep_ellipsoid import CSE return CSE() elif lens_type == 'ElliSLICE': from lenstronomy.LensModel.Profiles.elliptical_density_slice import ElliSLICE return ElliSLICE() elif lens_type == 'ULDM': from lenstronomy.LensModel.Profiles.uldm import Uldm return Uldm() elif lens_type == 'CORED_DENSITY_ULDM_MST': from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST return CoredDensityMST(profile_type='CORED_DENSITY_ULDM') else: raise ValueError( '%s is not a valid lens model. Supported are: %s.' % (lens_type, _SUPPORTED_MODELS))
class TestP_JAFFW(object): """ tests the Gaussian methods """ def setup(self): self.profile = PJaffe_Ellipse() def test_function(self): x = np.array([1]) y = np.array([2]) sigma0 = 1. Ra, Rs = 0.5, 0.8 q, phi_G = 0.8, 0 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) values = self.profile.function(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) npt.assert_almost_equal(values[0], 0.9091040398607811, decimal=8) x = np.array([0]) y = np.array([0]) values = self.profile.function(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) npt.assert_almost_equal(values[0], 0.20267440905756931, decimal=8) x = np.array([2, 3, 4]) y = np.array([1, 1, 1]) values = self.profile.function(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) npt.assert_almost_equal(values[0], 0.8327830942970774, decimal=8) npt.assert_almost_equal(values[1], 1.0233085474140422, decimal=8) npt.assert_almost_equal(values[2], 1.1868752663038047, decimal=8) def test_derivatives(self): x = np.array([1]) y = np.array([2]) sigma0 = 1. Ra, Rs = 0.5, 0.8 q, phi_G = 0.8, 0 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.profile.derivatives(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) npt.assert_almost_equal(f_x[0], 0.08130928181117723, decimal=8) npt.assert_almost_equal(f_y[0], 0.25409150565992883, decimal=8) x = np.array([0]) y = np.array([0]) f_x, f_y = self.profile.derivatives(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) assert f_x[0] == 0 assert f_y[0] == 0 x = np.array([1, 3, 4]) y = np.array([2, 1, 1]) values = self.profile.derivatives(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) npt.assert_almost_equal(values[0][0], 0.08130928181117723, decimal=8) npt.assert_almost_equal(values[1][0], 0.25409150565992883, decimal=8) npt.assert_almost_equal(values[0][1], 0.17711143165920576, decimal=8) npt.assert_almost_equal(values[1][1], 0.09224553732250299, decimal=8) def test_hessian(self): x = np.array([1]) y = np.array([2]) sigma0 = 1. Ra, Rs = 0.5, 0.8 q, phi_G = 0.8, 0 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_xx, f_xy, f_yx, f_yy = self.profile.hessian(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) npt.assert_almost_equal(f_xx[0], 0.06259391932550429, decimal=8) npt.assert_almost_equal(f_yy[0], -0.05572123112917993, decimal=8) npt.assert_almost_equal(f_xy[0], -0.058485405643460275, decimal=8) npt.assert_almost_equal(f_xy, f_yx, decimal=6) x = np.array([1, 3, 4]) y = np.array([2, 1, 1]) values = self.profile.hessian(x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0) npt.assert_almost_equal(values[0][0], 0.06259391932550429, decimal=8) npt.assert_almost_equal(values[3][0], -0.05572123112917993, decimal=8) def test_mass_3d_lens(self): mass = self.profile.mass_3d_lens(r=1, sigma0=1, Ra=0.5, Rs=0.8, e1=0, e2=0) npt.assert_almost_equal(mass, 0.87077306005349242, decimal=8)