class TestTNFW(object): def setup(self): self.nfw = NFW() self.tnfw = TNFW() def test_deflection(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.0 * Rs, 5 * Rs, 1000) y = np.linspace(0., 1, 1000) xdef_t, ydef_t = self.tnfw.derivatives(x, y, Rs, alpha_Rs, r_trunc) xdef, ydef = self.nfw.derivatives(x, y, Rs, alpha_Rs) np.testing.assert_almost_equal(xdef_t, xdef, 5) np.testing.assert_almost_equal(ydef_t, ydef, 5) def test_potential(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1 * Rs, 5 * Rs, 1000) y = np.linspace(0.2, 1, 1000) pot_t = self.tnfw.function(x, y, Rs, alpha_Rs, r_trunc) pot = self.nfw.function(x, y, Rs, alpha_Rs) np.testing.assert_almost_equal(pot, pot_t, 4) Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1, 0.7, 100) pot1 = self.tnfw.function(x, 0, Rs, alpha_Rs, r_trunc) pot_nfw1 = self.nfw.function(x, 0, Rs, alpha_Rs) npt.assert_almost_equal(pot1, pot_nfw1, 5) def test_gamma(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1 * Rs, 5 * Rs, 1000) y = np.linspace(0.2, 1, 1000) g1t, g2t = self.tnfw.nfwGamma((x**2 + y**2)**.5, Rs, alpha_Rs, r_trunc, x, y) g1, g2 = self.nfw.nfwGamma((x**2 + y**2)**.5, Rs, alpha_Rs, x, y) np.testing.assert_almost_equal(g1t, g1, 5) np.testing.assert_almost_equal(g2t, g2, 5) def test_hessian(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1 * Rs, 5 * Rs, 100) y = np.linspace(0.2, 1, 100) xxt, yyt, xyt = self.tnfw.hessian(x, y, Rs, alpha_Rs, r_trunc) xx, yy, xy = self.nfw.hessian(x, y, Rs, alpha_Rs) np.testing.assert_almost_equal(xy, xyt, 4) np.testing.assert_almost_equal(yy, yyt, 4) np.testing.assert_almost_equal(xy, xyt, 4) Rs = 0.2 r_trunc = 5 xxt, yyt, xyt = self.tnfw.hessian(Rs, 0, Rs, alpha_Rs, r_trunc) xxt_delta, yyt_delta, xyt_delta = self.tnfw.hessian( Rs + 0.000001, 0, Rs, alpha_Rs, r_trunc) npt.assert_almost_equal(xxt, xxt_delta, decimal=6) def test_density_2d(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1 * Rs, 3 * Rs, 1000) y = np.linspace(0.2, 0.5, 1000) kappa_t = self.tnfw.density_2d(x, y, Rs, alpha_Rs, r_trunc) kappa = self.nfw.density_2d(x, y, Rs, alpha_Rs) np.testing.assert_almost_equal(kappa, kappa_t, 5) def test_transform(self): rho0, Rs = 1, 2 trs = self.tnfw._rho02alpha(rho0, Rs) rho_out = self.tnfw._alpha2rho0(trs, Rs) npt.assert_almost_equal(rho0, rho_out) def test_numerical_derivatives(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1.5 * Rs diff = 1e-9 x0, y0 = 0.1, 0.1 x_def_t, y_def_t = self.tnfw.derivatives(x0, y0, Rs, alpha_Rs, r_trunc) x_def_t_deltax, _ = self.tnfw.derivatives(x0 + diff, y0, Rs, alpha_Rs, r_trunc) x_def_t_deltay, y_def_t_deltay = self.tnfw.derivatives( x0, y0 + diff, Rs, alpha_Rs, r_trunc) actual = self.tnfw.hessian(x0, y0, Rs, alpha_Rs, r_trunc) f_xx_approx = (x_def_t_deltax - x_def_t) * diff**-1 f_yy_approx = (y_def_t_deltay - y_def_t) * diff**-1 f_xy_approx = (x_def_t_deltay - y_def_t) * diff**-1 numerical = [f_xx_approx, f_yy_approx, f_xy_approx] for (approx, true) in zip(numerical, actual): npt.assert_almost_equal(approx, true)
class TestTNFW(object): def setup(self): self.nfw = NFW() self.tnfw = TNFW() def test_deflection(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.0 * Rs, 5 * Rs, 1000) y = np.linspace(0., 1, 1000) xdef_t, ydef_t = self.tnfw.derivatives(x, y, Rs, alpha_Rs, r_trunc) xdef, ydef = self.nfw.derivatives(x, y, Rs, alpha_Rs) np.testing.assert_almost_equal(xdef_t, xdef, 5) np.testing.assert_almost_equal(ydef_t, ydef, 5) def test_potential_limit(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1 * Rs, 5 * Rs, 1000) y = np.linspace(0.2, 1, 1000) pot_t = self.tnfw.function(x, y, Rs, alpha_Rs, r_trunc) pot = self.nfw.function(x, y, Rs, alpha_Rs) np.testing.assert_almost_equal(pot, pot_t, 4) def test_potential_derivative(self): Rs = 1.2 alpha_Rs = 1 r_trunc = 3 * Rs R = np.linspace(0.5 * Rs, 2.2 * Rs, 5000) dx = R[1] - R[0] alpha_tnfw = self.tnfw.nfwAlpha(R, Rs, 1, r_trunc, R, 0)[0] potential_array = self.tnfw.nfwPot(R, Rs, 1, r_trunc) alpha_tnfw_num_array = np.gradient(potential_array, dx) potential_from_float = [ self.tnfw.nfwPot(R_i, Rs, 1, r_trunc) for R_i in R ] alpha_tnfw_num_from_float = np.gradient(potential_from_float, dx) npt.assert_almost_equal(alpha_tnfw_num_array, alpha_tnfw, 4) npt.assert_almost_equal(alpha_tnfw_num_from_float, alpha_tnfw, 4) def test_gamma(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1 * Rs, 5 * Rs, 1000) y = np.linspace(0.2, 1, 1000) g1t, g2t = self.tnfw.nfwGamma((x**2 + y**2)**.5, Rs, alpha_Rs, r_trunc, x, y) g1, g2 = self.nfw.nfwGamma((x**2 + y**2)**.5, Rs, alpha_Rs, x, y) np.testing.assert_almost_equal(g1t, g1, 5) np.testing.assert_almost_equal(g2t, g2, 5) def test_hessian(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1 * Rs, 5 * Rs, 100) y = np.linspace(0.2, 1, 100) xxt, yyt, xyt = self.tnfw.hessian(x, y, Rs, alpha_Rs, r_trunc) xx, yy, xy = self.nfw.hessian(x, y, Rs, alpha_Rs) np.testing.assert_almost_equal(xy, xyt, 4) np.testing.assert_almost_equal(yy, yyt, 4) np.testing.assert_almost_equal(xy, xyt, 4) Rs = 0.2 r_trunc = 5 xxt, yyt, xyt = self.tnfw.hessian(Rs, 0, Rs, alpha_Rs, r_trunc) xxt_delta, yyt_delta, xyt_delta = self.tnfw.hessian( Rs + 0.000001, 0, Rs, alpha_Rs, r_trunc) npt.assert_almost_equal(xxt, xxt_delta, decimal=6) def test_density_2d(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1000000000000 * Rs x = np.linspace(0.1 * Rs, 3 * Rs, 1000) y = np.linspace(0.2, 0.5, 1000) kappa_t = self.tnfw.density_2d(x, y, Rs, alpha_Rs, r_trunc) kappa = self.nfw.density_2d(x, y, Rs, alpha_Rs) np.testing.assert_almost_equal(kappa, kappa_t, 5) def test_transform(self): rho0, Rs = 1, 2 trs = self.tnfw._rho02alpha(rho0, Rs) rho_out = self.tnfw._alpha2rho0(trs, Rs) npt.assert_almost_equal(rho0, rho_out) def test_numerical_derivatives(self): Rs = 0.2 alpha_Rs = 0.1 r_trunc = 1.5 * Rs diff = 1e-9 x0, y0 = 0.1, 0.1 x_def_t, y_def_t = self.tnfw.derivatives(x0, y0, Rs, alpha_Rs, r_trunc) x_def_t_deltax, _ = self.tnfw.derivatives(x0 + diff, y0, Rs, alpha_Rs, r_trunc) x_def_t_deltay, y_def_t_deltay = self.tnfw.derivatives( x0, y0 + diff, Rs, alpha_Rs, r_trunc) actual = self.tnfw.hessian(x0, y0, Rs, alpha_Rs, r_trunc) f_xx_approx = (x_def_t_deltax - x_def_t) * diff**-1 f_yy_approx = (y_def_t_deltay - y_def_t) * diff**-1 f_xy_approx = (x_def_t_deltay - y_def_t) * diff**-1 numerical = [f_xx_approx, f_yy_approx, f_xy_approx] for (approx, true) in zip(numerical, actual): npt.assert_almost_equal(approx, true) def test_F_function_at_one(self): f_tnfw = self.tnfw.F(1.) npt.assert_(f_tnfw == 1) f_tnfw = self.tnfw.F(np.ones((2, 2))) f_tnfw = f_tnfw.ravel() for value in f_tnfw: npt.assert_(value == 1)