コード例 #1
0
 def test_sis_ray_shooting(self):
     z_source = 1.5
     z_lens = 0.5
     lens_model_list = ['SIS']
     redshift_list = [z_lens]
     lensModelMutli = MultiPlane(z_source=z_source, lens_model_list=lens_model_list, lens_redshift_list=redshift_list)
     lensModel = LensModel(lens_model_list=lens_model_list)
     kwargs_lens = [{'theta_E': 1., 'center_x': 0, 'center_y': 0}]
     beta_x, beta_y = lensModelMutli.ray_shooting(1., 0., kwargs_lens)
     beta_x_single, beta_y_single = lensModel.ray_shooting(1, 0., kwargs_lens)
     npt.assert_almost_equal(beta_x, beta_x_single, decimal=8)
     npt.assert_almost_equal(beta_y, beta_y_single, decimal=8)
     x, y = np.array([1.]), np.array([2.])
     beta_x, beta_y = lensModelMutli.ray_shooting(x, y, kwargs_lens)
     beta_x_single, beta_y_single = lensModel.ray_shooting(x, y, kwargs_lens)
     npt.assert_almost_equal(beta_x, beta_x_single, decimal=8)
     npt.assert_almost_equal(beta_y, beta_y_single, decimal=8)
コード例 #2
0
    def test_ray_shooting_partial_2(self):

        z_source = 1.5
        lens_model_list = ['SIS', 'SIS', 'SIS', 'SIS']
        sis1 = {'theta_E': 0.4, 'center_x': 0, 'center_y': 0}
        sis2 = {'theta_E': .2, 'center_x': 0.5, 'center_y': 0}
        sis3 = {'theta_E': .1, 'center_x': 0, 'center_y': 0.5}
        sis4 = {'theta_E': 0.5, 'center_x': 0.1, 'center_y': 0.3}

        lens_model_list_macro = ['SIS']
        kwargs_macro = [{'theta_E': 1, 'center_x': 0, 'center_y': 0}]

        zmacro = 0.5

        z1 = 0.1
        z2 = 0.5
        z3 = 0.5
        z4 = 0.7
        redshift_list = [z1, z2, z3, z4]
        kwargs_lens = [sis1, sis2, sis3, sis4]
        kwargs_lens_full = kwargs_macro + kwargs_lens
        lensModel_full = MultiPlane(z_source=z_source, lens_model_list=lens_model_list_macro + lens_model_list,
                                        lens_redshift_list=[zmacro]+redshift_list)
        lensModel_macro = MultiPlane(z_source=z_source, lens_model_list=lens_model_list_macro, lens_redshift_list=[zmacro])
        lensModel = MultiPlane(z_source=z_source, lens_model_list=lens_model_list, lens_redshift_list=redshift_list)

        theta_x, theta_y = 1., 1.

        x_subs, y_subs, alpha_x_subs, alpha_y_subs = lensModel.ray_shooting_partial(x=0, y=0, alpha_x=theta_x,
                                                                                alpha_y=theta_y, z_start=0,
                                                                                z_stop=zmacro,
                                                                                kwargs_lens=kwargs_lens)

        x_out, y_out, alpha_x_out, alpha_y_out = lensModel_macro.ray_shooting_partial(x_subs, y_subs, alpha_x_subs, alpha_y_subs,
                                                                                zmacro, zmacro, kwargs_macro,
                                                                                include_z_start=True)
        npt.assert_almost_equal(x_subs, x_out)
        npt.assert_almost_equal(y_subs, y_out)

        x_full, y_full, alpha_x_full, alpha_y_full = lensModel_full.ray_shooting_partial(0, 0, theta_x, theta_y, 0, zmacro,
                                                                                         kwargs_lens_full)
        npt.assert_almost_equal(x_full, x_out)
        npt.assert_almost_equal(y_full, y_out)
        npt.assert_almost_equal(alpha_x_full, alpha_x_out)
        npt.assert_almost_equal(alpha_y_full, alpha_y_out)

        x_src, y_src, _, _ = lensModel_full.ray_shooting_partial(x=x_out, y=y_out, alpha_x=alpha_x_out,
                                                                                alpha_y=alpha_y_out,
                                                                                z_start=zmacro,
                                                                                z_stop=z_source,
                                                                                kwargs_lens=kwargs_lens_full)


        beta_x, beta_y = lensModel._co_moving2angle_source(x_src, y_src)
        beta_x_true, beta_y_true = lensModel_full.ray_shooting(theta_x, theta_y, kwargs_lens_full)

        npt.assert_almost_equal(beta_x, beta_x_true, decimal=8)
        npt.assert_almost_equal(beta_y, beta_y_true, decimal=8)
コード例 #3
0
    def test_random_ordering(self):
        z_source = 1.5
        lens_model_list = ['SIS', 'SIS', 'SIS']
        sis1 = {'theta_E': 1., 'center_x': 0, 'center_y': 0}
        sis2 = {'theta_E': .2, 'center_x': 0.5, 'center_y': 0}
        sis3 = {'theta_E': .1, 'center_x': 0, 'center_y': 0.5}
        z1 = 0.1
        z2 = 0.5
        z3 = 0.7
        redshift_list = [z1, z2, z3]
        kwargs_lens = [sis1, sis2, sis3]
        lensModel = MultiPlane(z_source=z_source, lens_model_list=lens_model_list, lens_redshift_list=redshift_list)
        beta_x_1, beta_y_1 = lensModel.ray_shooting(1., 0., kwargs_lens)

        redshift_list = [z3, z2, z1]
        kwargs_lens = [sis3, sis2, sis1]
        lensModel = MultiPlane(z_source=z_source, lens_model_list=lens_model_list, lens_redshift_list=redshift_list)
        beta_x_2, beta_y_2 = lensModel.ray_shooting(1., 0., kwargs_lens)
        npt.assert_almost_equal(beta_x_1, beta_x_2, decimal=8)
        npt.assert_almost_equal(beta_y_1, beta_y_2, decimal=8)
コード例 #4
0
 def test_sis_ray_tracing(self):
     z_source = 1.5
     lens_model_list = ['SIS']
     redshift_list = [0.5]
     lensModelMutli = MultiPlane(z_source=z_source, lens_model_list=lens_model_list, lens_redshift_list=redshift_list)
     lensModel = LensModel(lens_model_list=lens_model_list)
     kwargs_lens = [{'theta_E': 1, 'center_x': 0, 'center_y': 0}]
     beta_x_simple, beta_y_simple = lensModel.ray_shooting(1, 0, kwargs_lens)
     beta_x_multi, beta_y_multi = lensModelMutli.ray_shooting(1, 0, kwargs_lens)
     npt.assert_almost_equal(beta_x_simple, beta_x_multi, decimal=10)
     npt.assert_almost_equal(beta_y_simple, beta_y_multi, decimal=10)
     npt.assert_almost_equal(beta_x_simple, 0, decimal=10)
     npt.assert_almost_equal(beta_y_simple, 0, decimal=10)
コード例 #5
0
    def test_pseudo_multiplane(self):
        z_source = 1.5
        lens_model_list = ['SIS', 'SIS']
        sis1 = {'theta_E': 1., 'center_x': 0, 'center_y': 0}
        sis2 = {'theta_E': .2, 'center_x': 0.5, 'center_y': 0}
        z1 = 0.5
        z2 = 0.5

        redshift_list = [z1, z2]
        kwargs_lens = [sis1, sis2]
        lensModelMulti = MultiPlane(z_source=z_source, lens_model_list=lens_model_list, lens_redshift_list=redshift_list)
        lensModelSingle = LensModel(lens_model_list=lens_model_list)

        beta_x, beta_y = lensModelMulti.ray_shooting(1, 1, kwargs_lens)
        beta_x_single, beta_y_single = lensModelSingle.ray_shooting(1, 1, kwargs_lens)
        npt.assert_almost_equal(beta_x, beta_x_single, decimal=10)
        npt.assert_almost_equal(beta_y, beta_y_single, decimal=10)
コード例 #6
0
    def test_foreground_shear(self):
        """
        scenario: a shear field in the foreground of the main deflector is placed
        we compute the expected shear on the lens plain and effectively model the same system in a single plane
        configuration
        We check for consistency of the two approaches and whether the specific redshift of the foreground shear field has
        an impact on the arrival time surface
        :return:
        """
        z_source = 1.5
        z_lens = 0.5
        z_shear = 0.2
        x, y = np.array([1., 0.]), np.array([0., 2.])
        from astropy.cosmology import default_cosmology
        from lenstronomy.Cosmo.background import Background

        cosmo = default_cosmology.get()
        cosmo_bkg = Background(cosmo)
        e1, e2 = 0.01, 0.01  # shear terms caused by z_shear on z_source
        lens_model_list = ['SIS', 'SHEAR']
        redshift_list = [z_lens, z_shear]
        lensModelMutli = MultiPlane(z_source=z_source,
                                    lens_model_list=lens_model_list,
                                    lens_redshift_list=redshift_list)
        kwargs_lens_multi = [{
            'theta_E': 1,
            'center_x': 0,
            'center_y': 0
        }, {
            'e1': e1,
            'e2': e2
        }]
        alpha_x_multi, alpha_y_multi = lensModelMutli.alpha(
            x, y, kwargs_lens_multi)
        t_multi = lensModelMutli.arrival_time(x, y, kwargs_lens_multi)
        dt_multi = t_multi[0] - t_multi[1]
        physical_shear = cosmo_bkg.D_xy(0, z_source) / cosmo_bkg.D_xy(
            z_shear, z_source)
        foreground_factor = cosmo_bkg.D_xy(z_shear, z_lens) / cosmo_bkg.D_xy(
            0, z_lens) * physical_shear
        print(foreground_factor)
        lens_model_simple_list = ['SIS', 'FOREGROUND_SHEAR', 'SHEAR']
        kwargs_lens_single = [{
            'theta_E': 1,
            'center_x': 0,
            'center_y': 0
        }, {
            'e1': e1 * foreground_factor,
            'e2': e2 * foreground_factor
        }, {
            'e1': e1,
            'e2': e2
        }]
        lensModel = LensModel(lens_model_list=lens_model_simple_list)
        alpha_x_simple, alpha_y_simple = lensModel.alpha(
            x, y, kwargs_lens_single)
        npt.assert_almost_equal(alpha_x_simple, alpha_x_multi, decimal=8)
        npt.assert_almost_equal(alpha_y_simple, alpha_y_multi, decimal=8)

        ra_source, dec_source = lensModel.ray_shooting(x, y,
                                                       kwargs_lens_single)
        ra_source_multi, dec_source_multi = lensModelMutli.ray_shooting(
            x, y, kwargs_lens_multi)
        npt.assert_almost_equal(ra_source, ra_source_multi, decimal=8)
        npt.assert_almost_equal(dec_source, dec_source_multi, decimal=8)

        fermat_pot = lensModel.fermat_potential(x, y, ra_source, dec_source,
                                                kwargs_lens_single)
        from lenstronomy.Cosmo.lens_cosmo import LensCosmo
        lensCosmo = LensCosmo(z_lens, z_source, cosmo=cosmo)
        Dt = lensCosmo.D_dt
        print(lensCosmo.D_dt)
        #t_simple = const.delay_arcsec2days(fermat_pot, Dt)
        t_simple = lensCosmo.time_delay_units(fermat_pot)
        dt_simple = t_simple[0] - t_simple[1]
        print(t_simple, t_multi)
        npt.assert_almost_equal(dt_simple / dt_multi, 1, decimal=2)
コード例 #7
0
    def test_ray_shooting_partial(self):
        z_source = 1.5
        lens_model_list = ['SIS', 'SIS', 'SIS']
        sis1 = {'theta_E': 1., 'center_x': 0, 'center_y': 0}
        sis2 = {'theta_E': .2, 'center_x': 0.5, 'center_y': 0}
        sis3 = {'theta_E': .1, 'center_x': 0, 'center_y': 0.5}
        z1 = 0.1
        z2 = 0.5
        z3 = 0.7
        redshift_list = [z1, z2, z3]
        kwargs_lens = [sis1, sis2, sis3]
        lensModel = MultiPlane(z_source=z_source,
                               lens_model_list=lens_model_list,
                               lens_redshift_list=redshift_list)
        intermediate_index = 1
        theta_x, theta_y = 1., 1.

        z_intermediate = lensModel._redshift_list[intermediate_index]

        x_out, y_out, alpha_x_out, alpha_y_out = lensModel.ray_shooting_partial(
            x=0,
            y=0,
            alpha_x=theta_x,
            alpha_y=theta_y,
            z_start=0,
            z_stop=z_intermediate,
            kwargs_lens=kwargs_lens)
        x_out_full_0 = x_out
        y_out_full_0 = y_out

        x_out, y_out, alpha_x_out, alpha_y_out = lensModel.ray_shooting_partial(
            x=x_out,
            y=y_out,
            alpha_x=alpha_x_out,
            alpha_y=alpha_y_out,
            z_start=z_intermediate,
            z_stop=z_source,
            kwargs_lens=kwargs_lens)
        x_out_full_0 = np.append(x_out_full_0, x_out)
        y_out_full_0 = np.append(y_out_full_0, y_out)

        x_out_full, y_out_full, redshifts, tzlist = lensModel.ray_shooting_partial_steps(
            x=0,
            y=0,
            alpha_x=theta_x,
            alpha_y=theta_y,
            z_start=0,
            z_stop=z_source,
            kwargs_lens=kwargs_lens)

        npt.assert_almost_equal(x_out_full_0[0],
                                x_out_full[intermediate_index + 1])
        npt.assert_almost_equal(x_out_full_0[-1], x_out_full[-1])
        npt.assert_almost_equal(y_out_full_0[0],
                                y_out_full[intermediate_index + 1])
        npt.assert_almost_equal(y_out_full_0[-1], y_out_full[-1])
        npt.assert_almost_equal(redshifts[intermediate_index + 1],
                                lensModel._redshift_list[intermediate_index])
        npt.assert_almost_equal(tzlist[0],
                                lensModel._cosmo_bkg.T_xy(0, redshifts[0]))

        beta_x, beta_y = lensModel._co_moving2angle_source(x_out, y_out)
        beta_x_true, beta_y_true = lensModel.ray_shooting(
            theta_x, theta_y, kwargs_lens)
        npt.assert_almost_equal(beta_x, beta_x_true, decimal=8)
        npt.assert_almost_equal(beta_y, beta_y_true, decimal=8)
        x_out, y_out, alpha_x_out, alpha_y_out = lensModel.ray_shooting_partial(
            x=0,
            y=0,
            alpha_x=theta_x,
            alpha_y=theta_y,
            z_start=0,
            z_stop=z_source,
            kwargs_lens=kwargs_lens,
            keep_range=True)
        beta_x, beta_y = lensModel._co_moving2angle_source(x_out, y_out)
        npt.assert_almost_equal(beta_x, beta_x_true, decimal=8)
        npt.assert_almost_equal(beta_y, beta_y_true, decimal=8)