def __init__(self, light_model_list, kwargs_fixed, kwargs_lower=None, kwargs_upper=None, type='light', linear_solver=True): lightModel = LightModel(light_model_list=light_model_list) self._param_name_list = lightModel.param_name_list() self._type = type self.model_list = light_model_list self.kwargs_fixed = kwargs_fixed if linear_solver: self.kwargs_fixed = self.add_fixed_linear(self.kwargs_fixed) self._linear_solve = linear_solver if kwargs_lower is None: kwargs_lower = [] for func in lightModel.func_list: kwargs_lower.append(func.lower_limit_default) if kwargs_upper is None: kwargs_upper = [] for func in lightModel.func_list: kwargs_upper.append(func.upper_limit_default) self.lower_limit = kwargs_lower self.upper_limit = kwargs_upper
class TestLightModel(object): """ tests the source model routines """ def setup(self): self.light_model_list = [ 'GAUSSIAN', 'MULTI_GAUSSIAN', 'SERSIC', 'SERSIC_ELLIPSE', 'CORE_SERSIC', 'SHAPELETS', 'HERNQUIST', 'HERNQUIST_ELLIPSE', 'PJAFFE', 'PJAFFE_ELLIPSE', 'UNIFORM', 'POWER_LAW', 'NIE', 'INTERPOL', 'SHAPELETS_POLAR_EXP' ] phi_G, q = 0.5, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) self.kwargs = [ { 'amp': 1., 'sigma_x': 1, 'sigma_y': 1., 'center_x': 0, 'center_y': 0 }, # 'GAUSSIAN' { 'amp': [1., 2], 'sigma': [1, 3], 'center_x': 0, 'center_y': 0 }, # 'MULTI_GAUSSIAN' { 'amp': 1, 'R_sersic': 0.5, 'n_sersic': 1, 'center_x': 0, 'center_y': 0 }, # 'SERSIC' { 'amp': 1, 'R_sersic': 0.5, 'n_sersic': 1, 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0 }, # 'SERSIC_ELLIPSE' { 'amp': 1, 'R_sersic': 0.5, 'Re': 0.1, 'gamma': 2., 'n_sersic': 1, 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0 }, # 'CORE_SERSIC' { 'amp': [1, 1, 1], 'beta': 0.5, 'n_max': 1, 'center_x': 0, 'center_y': 0 }, # 'SHAPELETS' { 'amp': 1, 'Rs': 0.5, 'center_x': 0, 'center_y': 0 }, # 'HERNQUIST' { 'amp': 1, 'Rs': 0.5, 'center_x': 0, 'center_y': 0, 'e1': e1, 'e2': e2 }, # 'HERNQUIST_ELLIPSE' { 'amp': 1, 'Ra': 1, 'Rs': 0.5, 'center_x': 0, 'center_y': 0 }, # 'PJAFFE' { 'amp': 1, 'Ra': 1, 'Rs': 0.5, 'center_x': 0, 'center_y': 0, 'e1': e1, 'e2': e2 }, # 'PJAFFE_ELLIPSE' { 'amp': 1 }, # 'UNIFORM' { 'amp': 1., 'gamma': 2., 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0 }, # 'POWER_LAW' { 'amp': .001, 'e1': 0, 'e2': 1., 'center_x': 0, 'center_y': 0, 's_scale': 1. }, # 'NIE' { 'image': np.zeros((10, 10)), 'scale': 1, 'phi_G': 0, 'center_x': 0, 'center_y': 0 }, { 'amp': [1], 'n_max': 0, 'beta': 1, 'center_x': 0, 'center_y': 0 } ] self.LightModel = LightModel(light_model_list=self.light_model_list) def test_init(self): model_list = [ 'CORE_SERSIC', 'SHAPELETS', 'SHAPELETS_POLAR', 'SHAPELETS_POLAR_EXP', 'UNIFORM', 'CHAMELEON', 'DOUBLE_CHAMELEON', 'TRIPLE_CHAMELEON' ] lightModel = LightModel(light_model_list=model_list) assert len(lightModel.profile_type_list) == len(model_list) def test_surface_brightness(self): output = self.LightModel.surface_brightness(x=1, y=1, kwargs_list=self.kwargs) npt.assert_almost_equal(output, 3.7065728131855824, decimal=6) def test_surface_brightness_array(self): output = self.LightModel.surface_brightness(x=[1], y=[1], kwargs_list=self.kwargs) npt.assert_almost_equal(output[0], 3.7065728131855824, decimal=6) def test_functions_split(self): output = self.LightModel.functions_split(x=1., y=1., kwargs_list=self.kwargs) npt.assert_almost_equal(output[0][0], 0.058549831524319168, decimal=6) def test_re_normalize_flux(self): kwargs_out = self.LightModel.re_normalize_flux(kwargs_list=self.kwargs, norm_factor=2) assert kwargs_out[0]['amp'] == 2 * self.kwargs[0]['amp'] def test_param_name_list(self): param_name_list = self.LightModel.param_name_list() assert len(self.light_model_list) == len(param_name_list) def test_num_param_linear(self): num = self.LightModel.num_param_linear(self.kwargs, list_return=False) assert num == 18 num_list = self.LightModel.num_param_linear(self.kwargs, list_return=True) assert num_list[0] == 1 def test_update_linear(self): response, n = self.LightModel.functions_split(1, 1, self.kwargs) param = np.ones(n) * 2 kwargs_out, i = self.LightModel.update_linear(param, i=0, kwargs_list=self.kwargs) assert i == n assert kwargs_out[0]['amp'] == 2 def test_total_flux(self): light_model_list = [ 'SERSIC', 'SERSIC_ELLIPSE', 'INTERPOL', 'GAUSSIAN', 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE' ] kwargs_list = [ { 'amp': 1, 'R_sersic': 0.5, 'n_sersic': 1, 'center_x': 0, 'center_y': 0 }, # 'SERSIC' { 'amp': 1, 'R_sersic': 0.5, 'n_sersic': 1, 'e1': 0.1, 'e2': 0, 'center_x': 0, 'center_y': 0 }, # 'SERSIC_ELLIPSE' { 'image': np.ones((10, 10)), 'scale': 1, 'phi_G': 0, 'center_x': 0, 'center_y': 0 }, # 'INTERPOL' { 'amp': 2, 'sigma_x': 2, 'sigma_y': 1, 'center_x': 0, 'center_y': 0 }, # 'GAUSSIAN' { 'amp': 2, 'sigma': 2, 'e1': 0.1, 'e2': 0, 'center_x': 0, 'center_y': 0 }, # 'GAUSSIAN_ELLIPSE' { 'amp': [1, 1], 'sigma': [2, 1], 'center_x': 0, 'center_y': 0 }, # 'MULTI_GAUSSIAN' { 'amp': [1, 1], 'sigma': [2, 1], 'e1': 0.1, 'e2': 0, 'center_x': 0, 'center_y': 0 } # 'MULTI_GAUSSIAN_ELLIPSE' ] lightModel = LightModel(light_model_list=light_model_list) total_flux_list = lightModel.total_flux(kwargs_list) assert total_flux_list[2] == 100 assert total_flux_list[3] == 2 assert total_flux_list[4] == 2 assert total_flux_list[5] == 2 assert total_flux_list[6] == 2 total_flux_list = lightModel.total_flux(kwargs_list, norm=True) assert total_flux_list[2] == 100 assert total_flux_list[3] == 1 assert total_flux_list[4] == 1 assert total_flux_list[5] == 2 assert total_flux_list[6] == 2
class LightParam(object): """ """ def __init__(self, light_model_list, kwargs_fixed, kwargs_lower=None, kwargs_upper=None, type='light', linear_solver=True): self._lightModel = LightModel(light_model_list=light_model_list) self._param_name_list = self._lightModel.param_name_list() self._type = type self.model_list = light_model_list self.kwargs_fixed = kwargs_fixed if linear_solver: self.kwargs_fixed = self.add_fixed_linear(self.kwargs_fixed) self._linear_solve = linear_solver if kwargs_lower is None: kwargs_lower = [] for func in self._lightModel.func_list: kwargs_lower.append(func.lower_limit_default) if kwargs_upper is None: kwargs_upper = [] for func in self._lightModel.func_list: kwargs_upper.append(func.upper_limit_default) self.lower_limit = kwargs_lower self.upper_limit = kwargs_upper @property def param_name_list(self): return self._param_name_list def getParams(self, args, i): """ :param args: :param i: :return: """ kwargs_list = [] for k, model in enumerate(self.model_list): kwargs = {} kwargs_fixed = self.kwargs_fixed[k] param_names = self._param_name_list[k] for name in param_names: if not name in kwargs_fixed: if model in [ 'SHAPELETS', 'SHAPELETS_POLAR', 'SHAPELETS_POLAR_EXP' ] and name == 'amp': if 'n_max' in kwargs_fixed: n_max = kwargs_fixed['n_max'] else: raise ValueError('n_max needs to be fixed in %s.' % model) if model in ['SHAPELETS_POLAR_EXP']: num_param = int((n_max + 1)**2) else: num_param = int((n_max + 1) * (n_max + 2) / 2) kwargs['amp'] = args[i:i + num_param] i += num_param elif model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE' ] and name == 'amp': if 'sigma' in kwargs_fixed: num_param = len(kwargs_fixed['sigma']) else: raise ValueError('sigma needs to be fixed in %s.' % model) kwargs['amp'] = args[i:i + num_param] i += num_param else: kwargs[name] = args[i] i += 1 else: kwargs[name] = kwargs_fixed[name] kwargs_list.append(kwargs) return kwargs_list, i def setParams(self, kwargs_list): """ :param kwargs_list: :param bounds: bool, if True, ellitpicity of min/max :return: """ args = [] for k, model in enumerate(self.model_list): kwargs = kwargs_list[k] kwargs_fixed = self.kwargs_fixed[k] param_names = self._param_name_list[k] for name in param_names: if not name in kwargs_fixed: if model in [ 'SHAPELETS', 'SHAPELETS_POLAR', 'SHAPELETS_POLAR_EXP' ] and name == 'amp': n_max = kwargs_fixed.get('n_max', kwargs['n_max']) if model in ['SHAPELETS_POLAR_EXP']: num_param = int((n_max + 1)**2) else: num_param = int((n_max + 1) * (n_max + 2) / 2) for i in range(num_param): args.append(kwargs[name][i]) elif model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE' ] and name == 'amp': num_param = len(kwargs['sigma']) for i in range(num_param): args.append(kwargs[name][i]) elif model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE' ] and name == 'sigma': raise ValueError( "'sigma' must be a fixed keyword argument for MULTI_GAUSSIAN" ) else: args.append(kwargs[name]) return args def num_param(self): """ :return: """ num = 0 list = [] for k, model in enumerate(self.model_list): kwargs_fixed = self.kwargs_fixed[k] param_names = self._param_name_list[k] for name in param_names: if not name in kwargs_fixed: if model in [ 'SHAPELETS', 'SHAPELETS_POLAR', 'SHAPELETS_POLAR_EXP' ] and name == 'amp': if 'n_max' not in kwargs_fixed: raise ValueError( "n_max needs to be fixed in this configuration!" ) n_max = kwargs_fixed['n_max'] if model in ['SHAPELETS_POLAR_EXP']: num_param = int((n_max + 1)**2) else: num_param = int((n_max + 1) * (n_max + 2) / 2) num += num_param for i in range(num_param): list.append(str(name + '_' + self._type + str(k))) elif model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE' ] and name == 'amp': num_param = len(kwargs_fixed['sigma']) num += num_param for i in range(num_param): list.append(str(name + '_' + self._type + str(k))) else: num += 1 list.append(str(name + '_' + self._type + str(k))) return num, list def add_fixed_linear(self, kwargs_fixed_list): """ :param kwargs_fixed_list: list of fixed keyword arguments :return: updated kwargs_fixed_list with additional linear parameters being fixed. """ for k, model in enumerate(self.model_list): kwargs_fixed = kwargs_fixed_list[k] param_names = self._param_name_list[k] if 'amp' in param_names: if not 'amp' in kwargs_fixed: kwargs_fixed['amp'] = 1 return kwargs_fixed_list def num_param_linear(self): """ :return: number of linear basis set coefficients """ return self._lightModel.num_param_linear(kwargs_list=self.kwargs_fixed) def check_positive_flux_profile(self, kwargs_list): pos_bool = True for k, model in enumerate(self.model_list): if 'amp' in kwargs_list[k]: if model in [ 'SERSIC', 'SERSIC_ELLIPSE', 'CORE_SERSIC', 'HERNQUIST', 'PJAFFE', 'PJAFFE_ELLIPSE', 'HERNQUIST_ELLIPSE', 'GAUSSIAN', 'GAUSSIAN_ELLIPSE', 'POWER_LAW', 'NIE', 'CHAMELEON', 'DOUBLE_CHAMELEON' ]: if kwargs_list[k]['amp'] < 0: pos_bool = False break return pos_bool
class TestLightModel(object): """ tests the source model routines """ def setup(self): self.light_model_list = [ 'GAUSSIAN', 'MULTI_GAUSSIAN', 'SERSIC', 'SERSIC_ELLIPSE', 'CORE_SERSIC', 'SHAPELETS', 'HERNQUIST', 'HERNQUIST_ELLIPSE', 'PJAFFE', 'PJAFFE_ELLIPSE', 'UNIFORM', 'POWER_LAW', 'NIE' ] phi_G, q = 0.5, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) self.kwargs = [ { 'amp': 1., 'sigma_x': 1, 'sigma_y': 1., 'center_x': 0, 'center_y': 0 }, # 'GAUSSIAN' { 'amp': [1., 2], 'sigma': [1, 3], 'center_x': 0, 'center_y': 0 }, # 'MULTI_GAUSSIAN' { 'amp': 1, 'R_sersic': 0.5, 'n_sersic': 1, 'center_x': 0, 'center_y': 0 }, # 'SERSIC' { 'amp': 1, 'R_sersic': 0.5, 'n_sersic': 1, 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0 }, # 'SERSIC_ELLIPSE' { 'amp': 1, 'R_sersic': 0.5, 'Re': 0.1, 'gamma': 2., 'n_sersic': 1, 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0 }, # 'CORE_SERSIC' { 'amp': [1, 1, 1], 'beta': 0.5, 'n_max': 1, 'center_x': 0, 'center_y': 0 }, # 'SHAPELETS' { 'amp': 1, 'Rs': 0.5, 'center_x': 0, 'center_y': 0 }, # 'HERNQUIST' { 'amp': 1, 'Rs': 0.5, 'center_x': 0, 'center_y': 0, 'e1': e1, 'e2': e2 }, # 'HERNQUIST_ELLIPSE' { 'amp': 1, 'Ra': 1, 'Rs': 0.5, 'center_x': 0, 'center_y': 0 }, # 'PJAFFE' { 'amp': 1, 'Ra': 1, 'Rs': 0.5, 'center_x': 0, 'center_y': 0, 'e1': e1, 'e2': e2 }, # 'PJAFFE_ELLIPSE' { 'amp': 1 }, # 'UNIFORM' { 'amp': 1., 'gamma': 2., 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0 }, # 'POWER_LAW' { 'amp': .001, 'e1': 0, 'e2': 1., 'center_x': 0, 'center_y': 0, 's_scale': 1. }, # 'NIE' ] self.LightModel = LightModel(light_model_list=self.light_model_list) def test_init(self): model_list = [ 'CORE_SERSIC', 'SHAPELETS', 'UNIFORM', 'CHAMELEON', 'DOUBLE_CHAMELEON' ] lightModel = LightModel(light_model_list=model_list) assert len(lightModel.profile_type_list) == len(model_list) def test_surface_brightness(self): output = self.LightModel.surface_brightness(x=1, y=1, kwargs_list=self.kwargs) npt.assert_almost_equal(output, 3.512593731652167, decimal=6) def test_surface_brightness_array(self): output = self.LightModel.surface_brightness(x=[1], y=[1], kwargs_list=self.kwargs) npt.assert_almost_equal(output[0], 3.512593731652167, decimal=6) def test_functions_split(self): output = self.LightModel.functions_split(x=1., y=1., kwargs_list=self.kwargs) npt.assert_almost_equal(output[0][0], 0.058549831524319168, decimal=6) def test_re_normalize_flux(self): kwargs_out = self.LightModel.re_normalize_flux(kwargs_list=self.kwargs, norm_factor=2) assert kwargs_out[0]['amp'] == 2 * self.kwargs[0]['amp'] def test_param_name_list(self): param_name_list = self.LightModel.param_name_list() assert len(self.light_model_list) == len(param_name_list) def test_update_linear(self): response, n = self.LightModel.functions_split(1, 1, self.kwargs) param = np.ones(n) * 2 kwargs_out, i = self.LightModel.update_linear(param, i=0, kwargs_list=self.kwargs) assert i == n assert kwargs_out[0]['amp'] == 2