コード例 #1
0
def test_closed_boundary(advection_scheme):
    # FIXME: rk3 scheme does not bounces off the wall properly
    xmin, xmax = 0., 1.
    ymin, ymax = 0., 1.

    mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), 10, 10)

    # Particle
    x = np.array([[0.975, 0.475]])

    # Given velocity field:
    vexpr = Constant((1., 0.))
    # Given time do_step:
    dt = 0.05
    # Then bounced position is
    x_bounced = np.array([[0.975, 0.475]])

    p = particles(x, [x, x], mesh)

    V = VectorFunctionSpace(mesh, "CG", 1)
    v = Function(V)
    v.assign(vexpr)

    # Different boundary parts
    bound_left = UnitSquareLeft()
    bound_right = UnitSquareRight()
    bound_top = UnitSquareTop()
    bound_bottom = UnitSquareBottom()

    # Mark all facets
    facet_marker = MeshFunction('size_t', mesh, mesh.topology().dim() - 1)
    facet_marker.set_all(0)

    # Mark as closed
    bound_right.mark(facet_marker, 1)

    # Mark other boundaries as open
    bound_left.mark(facet_marker, 2)
    bound_top.mark(facet_marker, 2)
    bound_bottom.mark(facet_marker, 2)

    if advection_scheme == 'euler':
        ap = advect_particles(p, V, v, facet_marker)
    elif advection_scheme == 'rk2':
        ap = advect_rk2(p, V, v, facet_marker)
    elif advection_scheme == 'rk3':
        ap = advect_rk3(p, V, v, facet_marker)
    else:
        assert False

    # Do one timestep, particle must bounce from wall of
    ap.do_step(dt)
    xpE = p.positions()

    # Check if particle correctly bounced off from closed wall
    xpE_root = comm.gather(xpE, root=0)
    if comm.rank == 0:
        xpE_root = np.float64(np.vstack(xpE_root))
        error = np.linalg.norm(x_bounced - xpE_root)
        assert(error < 1e-10)
コード例 #2
0
def test_advect_periodic(advection_scheme):
    xmin, ymin, zmin = 0., 0., 0.
    xmax, ymax, zmax = 1., 1., 1.
    pres = 10

    mesh = UnitCubeMesh(10, 10, 10)

    lims = np.array([[xmin, xmin, ymin, ymax, zmin, zmax],
                     [xmax, xmax, ymin, ymax, zmin, zmax],
                     [xmin, xmax, ymin, ymin, zmin, zmax],
                     [xmin, xmax, ymax, ymax, zmin, zmax],
                     [xmin, xmax, ymin, ymax, zmin, zmin],
                     [xmin, xmax, ymin, ymax, zmax, zmax]])

    vexpr = Constant((1., 1., 1.))
    V = VectorFunctionSpace(mesh, "CG", 1)
    v = Function(V)
    v.assign(vexpr)

    x = RandomBox(Point(0., 0., 0.), Point(1., 1.,
                                           1.)).generate([pres, pres, pres])
    x = comm.bcast(x, root=0)
    dt = 0.05

    p = particles(x, [x * 0, x**2], mesh)

    if advection_scheme == 'euler':
        ap = advect_particles(p, V, v, 'periodic', lims.flatten())
    elif advection_scheme == 'rk2':
        ap = advect_rk2(p, V, v, 'periodic', lims.flatten())
    elif advection_scheme == 'rk3':
        ap = advect_rk3(p, V, v, 'periodic', lims.flatten())
    else:
        assert False

    xp0 = p.positions()
    t = 0.
    while t < 1. - 1e-12:
        ap.do_step(dt)
        t += dt
    xpE = p.positions()

    xp0_root = comm.gather(xp0, root=0)
    xpE_root = comm.gather(xpE, root=0)

    assert len(xp0) == len(xpE)
    num_particles = p.number_of_particles()

    if comm.Get_rank() == 0:
        xp0_root = np.float32(np.vstack(xp0_root))
        xpE_root = np.float32(np.vstack(xpE_root))

        # Sort on x positions
        xp0_root = xp0_root[xp0_root[:, 0].argsort(), :]
        xpE_root = xpE_root[xpE_root[:, 0].argsort(), :]

        error = np.linalg.norm(xp0_root - xpE_root)
        assert error < 1e-10
        assert num_particles - pres**3 == 0
コード例 #3
0
def test_advect_periodic(advection_scheme):
    # FIXME: this unit test is sensitive to the ordering of the particle
    # array, i.e. xp0_root and xpE_root may contain exactly the same entries
    # but only in a different order. This will return an error right now

    xmin, xmax = 0., 1.
    ymin, ymax = 0., 1.
    pres = 3

    mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), 10, 10)

    lims = np.array([[xmin, xmin, ymin, ymax], [xmax, xmax, ymin, ymax],
                     [xmin, xmax, ymin, ymin], [xmin, xmax, ymax, ymax]])

    vexpr = Constant((1., 1.))
    V = VectorFunctionSpace(mesh, "CG", 1)

    x = RandomRectangle(Point(0.05, 0.05), Point(0.15, 0.15)).generate([pres, pres])
    x = comm.bcast(x, root=0)
    dt = 0.05

    v = Function(V)
    v.assign(vexpr)

    p = particles(x, [x*0, x**2], mesh)

    if advection_scheme == 'euler':
        ap = advect_particles(p, V, v, 'periodic', lims.flatten())
    elif advection_scheme == 'rk2':
        ap = advect_rk2(p, V, v, 'periodic', lims.flatten())
    elif advection_scheme == 'rk3':
        ap = advect_rk3(p, V, v, 'periodic', lims.flatten())
    else:
        assert False

    xp0 = p.positions()
    t = 0.
    while t < 1.-1e-12:
        ap.do_step(dt)
        t += dt
    xpE = p.positions()

    # Check if position correct
    xp0_root = comm.gather(xp0, root=0)
    xpE_root = comm.gather(xpE, root=0)

    num_particles = p.number_of_particles()

    if comm.Get_rank() == 0:
        xp0_root = np.float32(np.vstack(xp0_root))
        xpE_root = np.float32(np.vstack(xpE_root))

        # Sort on x positions
        xp0_root = xp0_root[xp0_root[:, 0].argsort(), :]
        xpE_root = xpE_root[xpE_root[:, 0].argsort(), :]

        error = np.linalg.norm(xp0_root - xpE_root)
        assert error < 1e-10
        assert num_particles - pres**2 == 0
コード例 #4
0
def test_open_boundary(advection_scheme):
    xmin, xmax = 0.0, 1.0
    ymin, ymax = 0.0, 1.0
    pres = 3

    mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), 10, 10)

    # Particle
    x = RandomRectangle(Point(0.955, 0.45), Point(1.0,
                                                  0.55)).generate([pres, pres])
    x = comm.bcast(x, root=0)

    # Given velocity field:
    vexpr = Constant((1.0, 1.0))
    # Given time do_step:
    dt = 0.05

    p = particles(x, [x, x], mesh)

    V = VectorFunctionSpace(mesh, "CG", 1)
    v = Function(V)
    v.assign(vexpr)

    # Different boundary parts
    bound_left = UnitSquareLeft()
    bound_right = UnitSquareRight()
    bound_top = UnitSquareTop()
    bound_bottom = UnitSquareBottom()

    # Mark all facets
    facet_marker = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
    facet_marker.set_all(0)

    # Mark as open
    bound_right.mark(facet_marker, 2)

    # Mark other boundaries as closed
    bound_left.mark(facet_marker, 1)
    bound_top.mark(facet_marker, 1)
    bound_bottom.mark(facet_marker, 1)

    if advection_scheme == "euler":
        ap = advect_particles(p, V, v, facet_marker)
    elif advection_scheme == "rk2":
        ap = advect_rk2(p, V, v, facet_marker)
    elif advection_scheme == "rk3":
        ap = advect_rk3(p, V, v, facet_marker)
    else:
        assert False

    # Do one timestep, particle must bounce from wall of
    ap.do_step(dt)
    num_particles = p.number_of_particles()

    # Check if all particles left domain
    if comm.rank == 0:
        assert (num_particles == 0)
コード例 #5
0
def test_advect_periodic_facet_marker(advection_scheme):
    xmin, xmax = 0.0, 1.0
    ymin, ymax = 0.0, 1.0

    mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), 10, 10)
    facet_marker = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
    facet_marker.set_all(0)
    boundaries = Boundaries()
    boundaries.mark(facet_marker, 3)

    lims = np.array([
        [xmin, xmin, ymin, ymax],
        [xmax, xmax, ymin, ymax],
        [xmin, xmax, ymin, ymin],
        [xmin, xmax, ymax, ymax],
    ])

    vexpr = Constant((1.0, 1.0))
    V = VectorFunctionSpace(mesh, "CG", 1)

    x = RandomRectangle(Point(0.05, 0.05), Point(0.15, 0.15)).generate([3, 3])
    x = comm.bcast(x, root=0)
    dt = 0.05

    v = Function(V)
    v.assign(vexpr)

    p = particles(x, [x * 0, x**2], mesh)

    if advection_scheme == "euler":
        ap = advect_particles(p, V, v, facet_marker, lims.flatten())
    elif advection_scheme == "rk2":
        ap = advect_rk2(p, V, v, facet_marker, lims.flatten())
    elif advection_scheme == "rk3":
        ap = advect_rk3(p, V, v, facet_marker, lims.flatten())
    else:
        assert False

    xp0 = p.positions()
    t = 0.0
    while t < 1.0 - 1e-12:
        ap.do_step(dt)
        t += dt
    xpE = p.positions()

    # Check if position correct
    xp0_root = comm.gather(xp0, root=0)
    xpE_root = comm.gather(xpE, root=0)

    if comm.Get_rank() == 0:
        xp0_root = np.float32(np.vstack(xp0_root))
        xpE_root = np.float32(np.vstack(xpE_root))
        error = np.linalg.norm(xp0_root - xpE_root)
        assert error < 1e-10
コード例 #6
0
def test_bounded_domain_boundary(xlims, ylims, advection_scheme):
    xmin, xmax = xlims
    ymin, ymax = ylims
    pres = 1

    mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), 10, 10)

    ymin += 0.0025
    lims = np.array([xmin, xmax, ymin, ymax])

    v_arr = np.array([-1.0, -1.0])
    vexpr = Constant(v_arr)
    V = VectorFunctionSpace(mesh, "CG", 1)

    x = RandomRectangle(Point(0.05, 0.05), Point(0.15,
                                                 0.15)).generate([pres, pres])
    dt = 0.005

    v = Function(V)
    v.assign(vexpr)

    p = particles(x, [x], mesh)

    if advection_scheme == 'euler':
        ap = advect_particles(p, V, v, 'bounded', lims.flatten())
    elif advection_scheme == 'rk2':
        ap = advect_rk2(p, V, v, 'bounded', lims.flatten())
    elif advection_scheme == 'rk3':
        ap = advect_rk3(p, V, v, 'bounded', lims.flatten())
    else:
        assert False

    original_num_particles = p.number_of_particles()
    t = 0.
    while t < 3.0 - 1e-12:
        ap.do_step(dt)
        t += dt

        assert p.number_of_particles() == original_num_particles

        xpn = np.array(p.get_property(0)).reshape((-1, 2))
        x0 = np.array(p.get_property(1)).reshape((-1, 2))

        analytical_position = x0 + t * v_arr

        analytical_position[:, 0] = np.maximum(
            np.minimum(xmax, analytical_position[:, 0]), xmin)
        analytical_position[:, 1] = np.maximum(
            np.minimum(ymax, analytical_position[:, 1]), ymin)

        error = np.abs(xpn - analytical_position)

        assert np.all(np.abs(error) < 1e-12)
コード例 #7
0
def test_advect_open(advection_scheme):
    pres = 3

    mesh = UnitCubeMesh(10, 10, 10)

    # Particle
    x = RandomBox(Point(0.955, 0.45, 0.5),
                  Point(0.99, 0.55, 0.6)).generate([pres, pres, pres])
    x = comm.bcast(x, root=0)

    # Given velocity field:
    vexpr = Constant((1.0, 1.0, 1.0))
    # Given time do_step:
    dt = 0.05

    p = particles(x, [x, x], mesh)

    V = VectorFunctionSpace(mesh, "CG", 1)
    v = Function(V)
    v.assign(vexpr)

    # Different boundary parts
    bounds = Boundaries()
    bound_right = UnitCubeRight()

    # Mark all facets
    facet_marker = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
    facet_marker.set_all(0)
    bounds.mark(facet_marker, 1)
    bound_right.mark(facet_marker, 2)

    # Mark as open
    bound_right.mark(facet_marker, 2)

    if advection_scheme == "euler":
        ap = advect_particles(p, V, v, facet_marker)
    elif advection_scheme == "rk2":
        ap = advect_rk2(p, V, v, facet_marker)
    elif advection_scheme == "rk3":
        ap = advect_rk3(p, V, v, facet_marker)
    else:
        assert False

    # Do one timestep, particle must bounce from wall of
    ap.do_step(dt)
    num_particles = p.number_of_particles()

    # Check if all particles left domain
    if comm.rank == 0:
        assert num_particles == 0
コード例 #8
0
def test_advect_particle(advection_scheme):
    if comm.rank == 0:
        print('Run advect_particle')

    # Rotate one particle, and compute the error
    mesh = UnitSquareMesh(10, 10)

    # Particle
    x = np.array([[0.25, 0.25]])
    dt_list = [0.08, 0.04, 0.02, 0.01, 0.005]

    # Velocity field
    vexpr = Expression(('-pi*(x[1] - 0.5)', 'pi*(x[0]-0.5)'), degree=3)
    V = VectorFunctionSpace(mesh, "CG", 1)
    v = Function(V)
    v.assign(vexpr)

    error_list = []

    for dt in dt_list:
        p = particles(x, [x, x], mesh)
        if advection_scheme == 'euler':
            ap = advect_particles(p, V, v, 'closed')
        elif advection_scheme == 'rk2':
            ap = advect_rk2(p, V, v, 'closed')
        elif advection_scheme == 'rk3':
            ap = advect_rk3(p, V, v, 'closed')
        else:
            assert False

        xp_0 = p.positions()
        t = 0.
        while t < 2.-1e-12:
            ap.do_step(dt)
            t += dt

        xp_end = p.positions()
        error_list.append(np.linalg.norm(xp_0 - xp_end))

    if not all(eps == 0 for eps in error_list):
        rate = compute_convergence(dt_list, error_list)
        if advection_scheme == 'euler':
            # First order for euler
            assert any(i > 0.9 for i in rate)
        elif advection_scheme == 'rk2':
            # Second order for rk2
            assert any(i > 1.95 for i in rate)
        elif advection_scheme == 'rk3':
            # Third order for rk3
            assert any(i > 2.9 for i in rate)
コード例 #9
0
        V = VectorFunctionSpace(mesh, "CG", 1)
        uh = Function(V)
        uh.assign(Expression((ux, vy), degree=1))

        psi0_expression = SineHump(center=[0.5, 0.5], U=[float(ux), float(vy)], time=0.0, degree=6)

        # Generate particles
        x = RegularRectangle(Point(xmin, ymin), Point(xmax, ymax)).generate([pres, pres])
        s = np.zeros((len(x), 1), dtype=np.float_)

        # Initialize particles with position x and scalar property s at the mesh
        p = particles(x, [s], mesh)
        property_idx = 1  # Scalar quantity is stored at slot 1

        # Initialize advection class, simple forward Euler suffices
        ap = advect_particles(p, V, uh, "periodic", lims.flatten())

        # Define the variational (projection problem)
        W_e = FiniteElement("DG", mesh.ufl_cell(), k)
        T_e = FiniteElement("DG", mesh.ufl_cell(), 0)
        Wbar_e = FiniteElement("DGT", mesh.ufl_cell(), k)

        W = FunctionSpace(mesh, W_e)
        T = FunctionSpace(mesh, T_e)
        Wbar = FunctionSpace(mesh, Wbar_e, constrained_domain=PeriodicBoundary(lim_dict))

        psi_h, psi0_h = Function(W), Function(W)
        lambda_h = Function(T)
        psibar_h = Function(Wbar)

        # Initialize forms
        psi0_expression = SineHump(center=[0.5, 0.5],
                                   U=[float(ux), float(vy)],
                                   time=0.,
                                   degree=6)

        # Generate particles
        x = RegularRectangle(Point(xmin, ymin),
                             Point(xmax, ymax)).generate([pres, pres])
        s = np.zeros(len(x), dtype=np.float_)

        # Initialize particles with position x and scalar property s at the mesh
        p = particles(x, [s], mesh)
        property_idx = 1  # Scalar quantity is stored at slot 1

        # Initialize advection class, simple forward Euler suffices
        ap = advect_particles(p, V, uh, 'periodic', lims.flatten())

        # Define the variational (projection problem)
        W_e = FiniteElement("DG", mesh.ufl_cell(), k)
        T_e = FiniteElement("DG", mesh.ufl_cell(), 0)
        Wbar_e = FiniteElement("DGT", mesh.ufl_cell(), k)

        W = FunctionSpace(mesh, W_e)
        T = FunctionSpace(mesh, T_e)
        Wbar = FunctionSpace(mesh,
                             Wbar_e,
                             constrained_domain=PeriodicBoundary(lim_dict))

        psi_h, psi0_h = Function(W), Function(W)
        lambda_h = Function(T)
        psibar_h = Function(Wbar)