コード例 #1
0
    def test_hotspot(self):
        # Read in a pickle file with bboxes saved
        # Each item in the "all_bboxes" list will contain a
        # list of boxes for one of the images shown above
        box_list = pickle.load(open("bbox_pickle.p", "rb"))

        # Read in image similar to one shown above
        image = mpimg.imread(IMG_FILE)
        image_with_boxes = draw_boxes(image, box_list)

        heat = np.zeros_like(image[:, :, 0]).astype(np.float)

        # Add heat to each box in box list
        heat = uut.add_heat(heat, box_list)

        # Apply threshold to help remove false positives
        heat = uut.apply_threshold(heat, 1)

        # Visualize the heatmap when displaying
        heatmap = np.clip(heat, 0, 255)

        # Find final boxes from heatmap using label function
        labels = label(heatmap)
        draw_img = uut.draw_labeled_bboxes(np.copy(image), labels)

        final_image = image_util.arrangeImages(
            [image, image_with_boxes, heatmap, draw_img],
            ["Original", "Boxes that detected car", "Heatmap", "labeld boxes"],
            2)
        image_util.saveImage(final_image, TEST_OUT_DIR + "/hotspot.jpg")
コード例 #2
0
 def draw_sliding_windows(self, filename, img, y_start, y_stop, scale):
     xy_window = (int(64*scale),int(64*scale))
     boxes = slide_window(img, y_start_stop=[y_start, y_stop], xy_window=xy_window, xy_overlap=(0.75, 0.75))
     img = draw_boxes(img,boxes)
     img = cv2.rectangle(img,(0,y_start),(xy_window[0],y_start+xy_window[1]), (255,0,0), 6)
     print (len(boxes))
     print (img.shape)
     image_util.saveImage(img, filename)
コード例 #3
0
    def feed_image(self,img,isVideo=True):
        draw_image1 = np.copy(img)
        draw_image2 = np.copy(img)
        
        if self.imgsize==None or not isVideo:
            self.imgsize = img.shape[0:2]
            self.heatmap = np.zeros(self.imgsize,dtype='float64')

        # Detect Cars
        hot_windows = []
        for search_param in self.search_params:
            xstart = search_param["xstart"]
            xstop = search_param["xstop"]
            ystart = search_param["ystart"]
            ystop = search_param["ystop"]
            scale = search_param["scale"]
            hot_windows += lf.find_cars(img, xstart,xstop,ystart, ystop, scale, self.svc, self.X_scaler, self.orient,
                                self.pix_per_cell, self.cell_per_block, self.spatial_size, self.hist_bins,
                                color_space=self.color_space,hog_channel=self.hog_channel,spatial_feat=self.spatial_feat, 
                                hist_feat=self.hist_feat, hog_feat=self.hog_feat)
            
        window_img = lf.draw_boxes(draw_image1, hot_windows, color=(0, 0, 255), thick=6)  

        # Add to heatmap
        if not isVideo:
            self.heatmap = lf.add_heat(self.heatmap,hot_windows)
            self.heatmap_thresh = lf.apply_threshold(self.heatmap, self.minheat)
        else:
            self.heatmap = np.clip(self.heatmap-1,0,self.minheat)
            self.heatmap = lf.add_heat(self.heatmap,hot_windows)
            self.heatmap_thresh = lf.apply_threshold(self.heatmap, self.minheat)
            self.heatmap += self.heatmap_thresh

        labels = label(self.heatmap_thresh)
        label_boxes = lf.get_labeled_bboxes(labels)

        heatmap_img = np.asarray(np.dstack([self.heatmap,self.heatmap,self.heatmap])/np.max(self.heatmap)*255,dtype='uint8')

        out_img = lf.draw_boxes(draw_image2, label_boxes, color=(0, 255, 0), thick=6)  
        results_dict = {"window_img":window_img,"out_img":out_img,"heat_map":heatmap_img,"heat_map_thresh":self.heatmap_thresh}
        
        return results_dict
コード例 #4
0
 def draw_labeled_bboxes_with_history_verbose(self, img):
     heatmap_img = np.zeros_like(img[:,:,0])
     boxed_image = np.copy(img)
     for bbox_list in self.history:
         heatmap = self.add_heat(heatmap_img, bbox_list)
         boxed_image = draw_boxes(boxed_image,bbox_list)
     heatmap = self.apply_threshold(heatmap, self.history_max_size * 1.5)
     labels = label(heatmap)
     draw_img = self.draw_labeled_bboxes(img, labels)
     #draw_img = self.draw_heatmap(heatmap)
     return  draw_img, labels, heatmap, boxed_image
コード例 #5
0
    def get_cars(self, image):
        hot_windows = []
        if self.subsample:
            scales = [1, 1.5]
            for scale in scales:
                hot_windows.extend(
                    lf.find_cars(image,
                                 self.svc,
                                 self.X_scaler,
                                 spatial_size=(self.ssahb, self.ssahb),
                                 hist_bins=self.ssahb,
                                 scale=scale))
        else:
            hot_windows.extend(
                lf.detect_cars_in_image(image,
                                        self.svc,
                                        self.X_scaler,
                                        color_space=self.color,
                                        channel=self.channel,
                                        spatial_size=(self.ssahb, self.ssahb),
                                        hist_bins=self.ssahb,
                                        xy_windows=self.xy_windows))

        self.windows.append(hot_windows)
        if len(self.windows) > self.history:
            self.windows.pop(0)
        hw = []
        for wind in self.windows:
            hw.extend(wind)

        heatmap, labels = lf.heat_map(image, hw, self.heat_thres)
        draw_image = np.copy(image)
        if not self.heat_only:
            draw_image = lf.draw_boxes(draw_image,
                                       hw,
                                       color=(0, 0, 255),
                                       thick=6)
        draw_img = lf.draw_labeled_bboxes(draw_image, labels)
        return draw_img
コード例 #6
0
def process_pipeline(img, car_classifier, heatmapper, windows, debug=False):

    norm_img = img.astype(np.float32) / 255.0
    box_list = search_windows(
        img, windows, car_classifier.clf, car_classifier.feature_scaler,
        car_classifier.color_space, car_classifier.spatial_size,
        car_classifier.hist_bins, (0, 256), car_classifier.orient,
        car_classifier.pix_per_cell, car_classifier.cell_per_block,
        car_classifier.hog_channel, car_classifier.spatial_feat,
        car_classifier.hist_feat, car_classifier.hog_feat)
    if debug:
        boxes_img = np.copy(img)
        boxes_img = draw_boxes(img, box_list)

    # creat heatmap using box_list
    heatmap = heatmapper.compute_heatmap(box_list)
    labels = label(heatmap)
    draw_img = draw_labeled_bboxes(np.copy(img), labels)

    if debug:
        print("debug process pipeline")
        return draw_img, boxes_img
    else:
        return draw_img
コード例 #7
0
def process_image(imgfn, svc, X_scaler,
                  ssahb, channel, color, train_big, dc, heat_only, ss):
    """Searches for cars in images while varying features"""
    image = mpimg.imread(imgfn)
    
    if ss: # select subsampeling algorithm
        heat_thres = 2
        scales = [1, 1.5]
        windows = []
        for scale in scales:
            windows.extend(lf.find_cars(image, svc, X_scaler, 
                               spatial_size=(ssahb, ssahb), hist_bins=ssahb,
                               scale=scale))
        heatmap, labels = lf.heat_map(image, windows, heat_thres)
        cars = np.copy(image)
        if not heat_only:
            cars = lf.draw_boxes(cars, windows, color=(0, 0, 255), thick=6)
        cars = lf.draw_labeled_bboxes(cars, labels)
    else:
        cars = dc.get_cars(image)
#    hot_windows = lf.detect_cars_in_image(image, svc, X_scaler)
#    threshold = 4
#    heatmap, labels = lf.heat_map(image, hot_windows, threshold)
    return cars
コード例 #8
0
for img_file in test_win_images:
    t = time.time()
    img = mpimg.imread(img_file)
    win_img = np.copy(img)
    img = img.astype(np.float32)/255
    print(np.min(img), np.max(img))
    h = img.shape[0]
    y_start_stop = [h//2, h]
    print('y_start_stop', y_start_stop)

    windows = slide_window(img, x_start_stop=[None, None],
                           y_start_stop=y_start_stop, xy_window=(96, 96), xy_overlap=(overlap, overlap))

    search_wins = search_windows(img, windows, svc, X_scaler, color_space=color_space,
                                 spatial_size=spatial_size, hist_bins=hist_bins, orient=orient,
                                 pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel,
                                 spatial_feat=spatial_feat, hist_feat=hist_feat, hog_feat=hog_feat)

    window_img = draw_boxes(win_img, search_wins, color=(0, 0, 255), thick=5)

    temp_images.append(window_img)
    titles.append(img_file)
    print(time.time()-t, 'seconds to process one image searching', len(windows), 'windows')
    
fig = plt.figure(figsize=(12,18), dpi=300)
visualize(fig, 5,2, temp_images, titles)
write_name= 'output_images/search_draw_win/search_draw_win'+'.jpg'
print('car_plot image: ', write_name)

fig.savefig(write_name)
コード例 #9
0
 def _lane_car_locate_pipeline(rgb_img):
     """Run both vehicle_zone and lane_zone pipelines."""
     car_matches = vehicle_zone.locate_nearby_cars(rgb_img)
     lane_img = lane_zone.locate_lane_bounds(rgb_img)
     return lesson_functions.draw_boxes(lane_img, car_matches)
コード例 #10
0
 def draw_rectangles(self, image, rects, color=(0, 0, 1), thick=6):
     return lesson_functions.draw_boxes(image, rects, color, thick)
コード例 #11
0
    draw_img = draw_labeled_bboxes(image, labels)

    if show_heat:
        heatmap = np.clip(heat, 0, 255)
        return draw_img, heatmap, hot_windows
    else:
        return draw_img


if __name__ == '__main__':
    image = mpimg.imread(TEST_IMAGE)
    t_start = time.time()
    draw_img, heatmap, hot_windows = detect_vehicle(image, show_heat=True)
    t_end = time.time()
    print("Time take to process image:", round(t_end - t_start, 2))
    window_img = draw_boxes(image, hot_windows, color=(0, 0, 255), thick=6)

    # fig = plt.figure(figsize=(12,6))
    # plt.subplot(131)
    # plt.imshow(window_img)
    # plt.title('All Detected Windows')
    # plt.subplot(132)
    # plt.imshow(draw_img)
    # plt.title('Car Positions')
    # plt.subplot(133)
    # plt.imshow(heatmap, cmap='hot')
    # plt.title('Heat Map')
    # fig.tight_layout()
    # plt.show()
    plt.imshow(window_img)
    plt.axis('off')
コード例 #12
0
def videopipe(video_image):
    # this is the way to treat each videoframe
    video_image_png = video_image.astype(np.float32) / 255
    draw_image = np.copy(video_image)
    #    print(str(np.amax(draw_image)))
    '''
    # For the output of a single image:
    test_file_name = 'test1.jpg'
    test_file_folder = '../test_images/'
    test_file = test_file_folder+test_file_name
    test_image_name = test_file_name+'_LUVonlySpat.jpg'
    test_image_png = mpimg.imread(test_file)
    test_image = test_image_png.astype(np.float32)/255
    draw_image = np.copy(test_image)
   '''

    # Search for matches in image:
    hot_windows_spat = detect.search_windows(video_image_png,
                                             windows,
                                             svc_spat,
                                             X_scaler_spat,
                                             color_space=color_space,
                                             spatial_size=spatial_size,
                                             hist_bins=hist_bins,
                                             orient=orient,
                                             pix_per_cell=pix_per_cell,
                                             cell_per_block=cell_per_block,
                                             hog_channel=hog_channel,
                                             spatial_feat=spatial_feat,
                                             hist_feat=False,
                                             hog_feat=False)
    hot_windows_hist = detect.search_windows(video_image_png,
                                             windows,
                                             svc_hist,
                                             X_scaler_hist,
                                             color_space=color_space,
                                             spatial_size=spatial_size,
                                             hist_bins=hist_bins,
                                             orient=orient,
                                             pix_per_cell=pix_per_cell,
                                             cell_per_block=cell_per_block,
                                             hog_channel=hog_channel,
                                             spatial_feat=spatial_feat,
                                             hist_feat=hist_feat,
                                             hog_feat=False)
    hot_windows_hog = detect.search_windows(video_image_png,
                                            windows,
                                            svc_hog,
                                            X_scaler_hog,
                                            color_space=color_space,
                                            spatial_size=spatial_size,
                                            hist_bins=hist_bins,
                                            orient=orient,
                                            pix_per_cell=pix_per_cell,
                                            cell_per_block=cell_per_block,
                                            hog_channel=hog_channel,
                                            spatial_feat=False,
                                            hist_feat=False,
                                            hog_feat=hog_feat)
    #print("hot_windows_spat: "+str(len(hot_windows_spat)))
    #print("hot_windows_hist: "+str(len(hot_windows_hist)))
    #print("hot_windows_hog:  "+str(len(hot_windows_hog )))
    hot_windows = []
    hot_windows.extend(hot_windows_spat)
    hot_windows.extend(hot_windows_hist)
    hot_windows.extend(hot_windows_hog)
    burning_windows = len(hot_windows)

    font = cv2.FONT_HERSHEY_SIMPLEX

    #    '''	# for debugging:
    # Drawing the identified rectangles on the image
    window_img = lesson_functions.draw_boxes(draw_image,
                                             hot_windows_spat,
                                             color=(255, 0, 255),
                                             thick=2)
    cv2.putText(window_img, str(nnn), (50, 100), font, 1.5, (255, 255, 255), 2,
                cv2.LINE_AA)
    cv2.putText(window_img, "hot windows found: " + str(len(hot_windows_spat)),
                (150, 100), font, 1.5, (255, 0, 255), 2, cv2.LINE_AA)
    cv2.putText(window_img, "spatial bins: " + str(spatial_size), (100, 150),
                font, 1, (255, 0, 255), 2, cv2.LINE_AA)
    cv2.imwrite(folder + '/spat/spat_' + str(nnn) + '.jpg', window_img)

    window_img = lesson_functions.draw_boxes(draw_image,
                                             hot_windows_hist,
                                             color=(0, 255, 255),
                                             thick=2)
    cv2.putText(window_img, str(nnn), (50, 100), font, 1.5, (255, 255, 255), 2,
                cv2.LINE_AA)
    cv2.putText(window_img, "hot windows found: " + str(len(hot_windows_hist)),
                (150, 100), font, 1.5, (0, 255, 255), 2, cv2.LINE_AA)
    cv2.putText(window_img, "hist_bins: " + str(hist_bins), (100, 150), font,
                1, (0, 255, 255), 2, cv2.LINE_AA)
    cv2.imwrite(folder + '/hist/hist_' + str(nnn) + '.jpg', window_img)

    window_img = lesson_functions.draw_boxes(draw_image,
                                             hot_windows_hog,
                                             color=(255, 255, 0),
                                             thick=2)
    cv2.putText(window_img, str(nnn), (50, 100), font, 1.5, (255, 255, 255), 2,
                cv2.LINE_AA)
    cv2.putText(window_img, "hot windows found: " + str(len(hot_windows_hog)),
                (150, 100), font, 1.5, (255, 255, 0), 2, cv2.LINE_AA)
    cv2.putText(
        window_img, "orient: " + str(orient) + "  pix_per_cell: " +
        str(pix_per_cell) + "  cell_per_block: " + str(cell_per_block) +
        "  hog_channel: " + str(hog_channel), (100, 150), font, 1,
        (255, 255, 0), 2, cv2.LINE_AA)
    cv2.imwrite(folder + '/hog/hog_' + str(nnn) + '.jpg', window_img)

    window_img = lesson_functions.draw_boxes(draw_image,
                                             hot_windows,
                                             color=(0, 0, 255),
                                             thick=2)
    cv2.putText(window_img, str(nnn), (50, 100), font, 1.5, (255, 255, 255), 2,
                cv2.LINE_AA)
    cv2.putText(window_img, "hot windows found: " + str(len(hot_windows)),
                (150, 100), font, 1.5, (0, 0, 255), 2, cv2.LINE_AA)
    cv2.putText(
        window_img, "abs_threshold: " + str(abs_threshold) + "  dyn_lim: " +
        str(dyn_lim) + " = " + str(int(dyn_lim * len(hot_windows))),
        (100, 150), font, 1, (0, 0, 255), 2, cv2.LINE_AA)
    cv2.putText(
        window_img, "spat: " + str(len(hot_windows_spat)) + "  hist: " +
        str(len(hot_windows_hist)) + "  hog: " + str(len(hot_windows_hog)),
        (100, 200), font, 1, (0, 0, 255), 2, cv2.LINE_AA)
    # document single image output
    #    '''

    global nnn
    nnn = nnn + 1

    # consolidate heatmap
    #    threshold = 6
    #    dyn_threshold = int(burning_windows*0.15) # % of all frames must be overlapping object for detection
    dyn_threshold = int(
        burning_windows *
        dyn_lim)  # % of all frames must be overlapping object for detection
    labels, heat_max = heatmap.heathot(hot_windows, draw_image, dyn_threshold,
                                       abs_threshold, max_threshold)
    #    print("labels shape after: "+labels.shape)

    ##############################
    # Another filter function added with love to the Udacity reviewers
    ##############################

    # generate list of boundary boxes
    bbox_list = heatmap.draw_labeled_bboxes(video_image_png, labels)[1]

    #    print("before append: "+str(history))

    history.append(bbox_list)
    #    print("after append: "+str(history))
    #    print(hot_windows_hist)

    tmp = []
    for n in history:
        tmp.extend(n)

#    print("tmp = ")
#    print(tmp)

#    print(history[0].shape)
    if nnn > history_length + 1:
        labels = heatmap.heathot(tmp, draw_image, history_threshold, -1,
                                 100)[0]

#    print(bbox_list)
#    print(len(bbox_list))
#    print(np.amax(bbox_list))
#    print(labels[0].shape)

    if (len(hot_windows_spat) >
            abs_limit) and (len(hot_windows_hist) > abs_limit) and (
                len(hot_windows_hog) > abs_limit
            ):  # there have to be at least some detections in each filter
        draw_image = heatmap.draw_labeled_bboxes(draw_image, labels)[0]
#    else:
#        draw_img = draw_image

#    ''' for documentation purposes add results to output image
    if (len(hot_windows_spat) >
            abs_limit) and (len(hot_windows_hist) > abs_limit) and (
                len(hot_windows_hog) > abs_limit
            ):  # there have to be at least some detections in each filter
        docu_img = heatmap.draw_labeled_bboxes(window_img, labels)[0]
    else:
        docu_img = window_img
    cv2.putText(docu_img, "heat_max: " + str(heat_max), (100, 250), font, 1,
                (255, 255, 255), 2, cv2.LINE_AA)
    cv2.imwrite(folder + '/all/all_' + str(nnn) + '.jpg', docu_img)
    #    '''

    # label each frame with a counter for debugging / threshold
    cv2.putText(draw_image, str(nnn), (50, 100), font, 1, (255, 255, 255), 2,
                cv2.LINE_AA)
    cv2.putText(draw_image, "hot windows found: " + str(len(hot_windows)),
                (150, 100), font, 1, (0, 0, 255), 2, cv2.LINE_AA)
    cv2.imwrite(folder + '/output/out_' + str(nnn) + '.jpg', draw_image)

    return draw_image
コード例 #13
0
                                        hist_feat=False,
                                        hog_feat=hog_feat)
#print("hot_windows_spat: "+str(len(hot_windows_spat)))
#print("hot_windows_hist: "+str(len(hot_windows_hist)))
#print("hot_windows_hog: " +str(len(hot_windows_hog )))
hot_windows = []
hot_windows.extend(hot_windows_spat)
hot_windows.extend(hot_windows_hist)
hot_windows.extend(hot_windows_hog)
burning_windows = len(hot_windows)

print("hot_windows found: " + str(len(hot_windows)))

# Drawing the identified rectangles on the image
window_img = lesson_functions.draw_boxes(draw_image,
                                         hot_windows_spat,
                                         color=(255, 0, 255),
                                         thick=2)
cv2.imwrite(folder + '/testpic/' + test_file_name + '_spat.jpg', window_img)
window_img = lesson_functions.draw_boxes(draw_image,
                                         hot_windows_hist,
                                         color=(0, 255, 255),
                                         thick=2)
cv2.imwrite(folder + '/testpic/' + test_file_name + '_hist.jpg', window_img)
window_img = lesson_functions.draw_boxes(draw_image,
                                         hot_windows_hog,
                                         color=(255, 255, 0),
                                         thick=2)
cv2.imwrite(folder + '/testpic/' + test_file_name + '_hog.jpg', window_img)
window_img = lesson_functions.draw_boxes(draw_image,
                                         hot_windows,
                                         color=(0, 0, 255),
コード例 #14
0
    print('spatial_feat: ', params['spatial_feat'])
    print('hist_feat: ', params['hist_feat'])
    print('hog_feat: ', params['hog_feat'])

    #img = mpimg.imread('test_images/test1.jpg')
    #img = mpimg.imread('test_images/test2.jpg')
    #img = mpimg.imread('test_images/test3.jpg')
    img = mpimg.imread('test_images/test4.jpg')
    #img = mpimg.imread('test_images/test5.jpg')
    #img = mpimg.imread('test_images/test6.jpg')

    ystart = 400
    ystop = 656
    scale = 1.5

    t = time.time()

    draw_img = np.copy(img)
    img = img.astype(np.float32) / 255
    bboxes = find_cars(img, ystart, ystop, scale, svc, X_scaler, params)

    t2 = time.time()
    print(round(t2 - t, 5), 'Seconds to detect using scale:', scale)

    draw_img = draw_boxes(draw_img, bboxes)

    plt.figure(figsize=(8, 8))
    plt.xlim(0, 1280)
    plt.ylim(720, 0)
    plt.imshow(draw_img)