valid_costs.append(ev_total_cost) # Plot and summarize values = { 'nepochs':count, 'has_any_valid_set': True, 'tr_total_cost':tr_total_cost, 'ev_total_cost':ev_total_cost, 'tr_recon_cost':tr_recon_cost, 'ev_recon_cost':ev_recon_cost, 'tr_kl_cost':tr_kl_cost, 'ev_kl_cost':ev_kl_cost, 'l2_weight':l2_weight, 'kl_weight':kl_weight, 'l2_cost':l2_cost } model.summarize_all(datasets, values) # Manage learning rate. n_lr = hps.learning_rate_n_to_compare if len(train_costs) > n_lr and tr_total_cost > np.max(train_costs[-n_lr:]): lr = session.run(model.learning_rate_decay_op) print(" Decreasing learning rate to %f." % lr) # Force the system to run n_lr times while at this lr. train_costs.append(np.inf) else: train_costs.append(tr_total_cost) if lr < lr_stop: print("Stopping optimization based on learning rate criteria.") break
valid_costs.append(ev_total_cost) # Plot and summarize values = { 'nepochs':count, 'has_any_valid_set': True, 'tr_total_cost':tr_total_cost, 'ev_total_cost':ev_total_cost, 'tr_recon_cost':tr_recon_cost, 'ev_recon_cost':ev_recon_cost, 'tr_kl_cost':tr_kl_cost, 'ev_kl_cost':ev_kl_cost, 'l2_weight':l2_weight, 'kl_weight':kl_weight, 'l2_cost':l2_cost } model.summarize_all(data, values) # Manage learning rate. n_lr = hps.learning_rate_n_to_compare if len(train_costs) > n_lr and tr_total_cost > np.max(train_costs[-n_lr:]): lr = session.run(model.learning_rate_decay_op) print(" Decreasing learning rate to %f." % lr) # Force the system to run n_lr times while at this lr. train_costs.append(np.inf) else: train_costs.append(tr_total_cost) if lr < lr_stop: print("Stopping optimization based on learning rate criteria.") break