def prepare_data_pipeline(): # batch size config_dict['batch_size'] = 4 # number of train data_loader workers config_dict['num_train_workers'] = 4 # number of val data_loader workers config_dict['num_val_workers'] = 4 # construct train data_loader config_dict['train_dataset_path'] = './COCO_pack/coco_train2017.pkl' train_dataset = Dataset(load_path=config_dict['train_dataset_path']) train_dataset_sampler = COCORandomDatasetSampler( dataset=train_dataset, batch_size=config_dict['batch_size'], shuffle=True, ) train_region_sampler = TypicalCOCOTrainingRegionSampler( resize_shorter_range=(800, ), resize_longer_limit=1333, pad_divisor=32) config_dict['train_data_loader'] = DataLoader( dataset=train_dataset, dataset_sampler=train_dataset_sampler, region_sampler=train_region_sampler, augmentation_pipeline=typical_coco_train_pipeline, num_workers=config_dict['num_train_workers']) # construct val data_loader config_dict['val_dataset_path'] = './COCO_pack/coco_val2017.pkl' val_dataset = Dataset(load_path=config_dict['val_dataset_path']) val_dataset_sampler = RandomDatasetSampler( dataset=val_dataset, batch_size=config_dict['batch_size'], shuffle=False, ignore_last=False) val_region_sampler = TypicalCOCOTrainingRegionSampler( resize_shorter_range=(800, ), resize_longer_limit=1333, pad_divisor=32) config_dict['val_data_loader'] = DataLoader( dataset=val_dataset, dataset_sampler=val_dataset_sampler, region_sampler=val_region_sampler, augmentation_pipeline=typical_coco_val_pipeline, num_workers=config_dict['num_val_workers']) # evaluator # the evaluator should match the dataset config_dict[ 'val_annotation_path'] = '/home/yonghaohe/datasets/COCO/annotations/instances_val2017.json' config_dict['evaluator'] = COCOEvaluator( annotation_path=config_dict['val_annotation_path'], label_indexes_to_category_ids=val_dataset. meta_info['label_indexes_to_category_ids'])
def prepare_data_pipeline(): # batch size config_dict['batch_size'] = 64 # number of train data_loader workers config_dict['num_train_workers'] = 12 # number of val data_loader workers config_dict['num_val_workers'] = 0 # construct train data_loader config_dict['train_dataset_path'] = './WIDERFACE_pack/widerface_train.pkl' train_dataset = Dataset(load_path=config_dict['train_dataset_path']) train_dataset_sampler = RandomWithNegDatasetSampler( train_dataset, batch_size=config_dict['batch_size'], neg_ratio=0.2, shuffle=True, ignore_last=False) train_region_sampler = RandomBBoxCropRegionSampler(crop_size=480, resize_range=(0.5, 1.5), resize_prob=0.5) config_dict['train_data_loader'] = DataLoader( dataset=train_dataset, dataset_sampler=train_dataset_sampler, region_sampler=train_region_sampler, augmentation_pipeline=simple_widerface_train_pipeline, num_workers=config_dict['num_train_workers'])
def prepare_data_pipeline(): # batch size config_dict['batch_size'] = 12 # number of train data_loader workers config_dict['num_train_workers'] = 6 # number of val data_loader workers config_dict['num_val_workers'] = 0 # construct train data_loader config_dict['train_dataset_path'] = './WIDERFACE_pack/widerface_train.pkl' train_dataset = Dataset(load_path=config_dict['train_dataset_path']) train_dataset_sampler = RandomWithNegDatasetSampler( train_dataset, batch_size=config_dict['batch_size'], neg_ratio=0.2, shuffle=True, ignore_last=False) train_region_sampler = RandomBBoxCropWithRangeSelectionRegionSampler( crop_size=480, detection_ranges=config_dict['detection_scales'], range_selection_probs=[1, 1, 1, 1, 1], lock_threshold=30) config_dict['train_data_loader'] = DataLoader( dataset=train_dataset, dataset_sampler=train_dataset_sampler, region_sampler=train_region_sampler, augmentation_pipeline=simple_widerface_train_pipeline, num_workers=config_dict['num_train_workers'])
def prepare_data_pipeline(): # batch size config_dict['batch_size'] = 16 # number of train data_loader workers config_dict['num_train_workers'] = 4 # number of val data_loader workers config_dict['num_val_workers'] = 0 # construct train data_loader config_dict['train_dataset_path'] = 'xxxxxxxxx' train_dataset = Dataset(load_path=config_dict['train_dataset_path']) train_dataset_sampler = RandomWithNegDatasetSampler( train_dataset, batch_size=config_dict['batch_size'], neg_ratio=0.1, shuffle=True, ignore_last=False) train_region_sampler = RandomBBoxCropRegionSampler(crop_size=512, resize_range=(0.5, 1.5)) config_dict['train_data_loader'] = DataLoader( dataset=train_dataset, dataset_sampler=train_dataset_sampler, region_sampler=train_region_sampler, augmentation_pipeline=simple_widerface_train_pipeline, num_workers=config_dict['num_train_workers']) # construct val data_loader config_dict['val_dataset_path'] = 'xxxxxxxxxx' val_dataset = Dataset(load_path=config_dict['val_dataset_path']) val_dataset_sampler = RandomDatasetSampler( dataset=val_dataset, batch_size=config_dict['batch_size'], shuffle=False, ignore_last=False) val_region_sampler = IdleRegionSampler() config_dict['val_data_loader'] = DataLoader( dataset=val_dataset, dataset_sampler=val_dataset_sampler, region_sampler=val_region_sampler, augmentation_pipeline=simple_widerface_val_pipeline, num_workers=config_dict['num_val_workers'])
def prepare_data_pipeline(): # batch size config_dict['batch_size'] = 4 # number of train data_loader workers config_dict['num_train_workers'] = 4 # number of val data_loader workers config_dict['num_val_workers'] = 4 # construct train data_loader config_dict['train_dataset_path'] = './debug_data/train.pkl' train_dataset = Dataset(load_path=config_dict['train_dataset_path']) train_dataset_sampler = RandomWithNegDatasetSampler( train_dataset, batch_size=config_dict['batch_size'], neg_ratio=0.2, shuffle=True, ignore_last=False) train_region_sampler = RandomBBoxCropRegionSampler(crop_size=640, resize_range=(0.5, 1.5), resize_prob=0.5) config_dict['train_data_loader'] = DataLoader( dataset=train_dataset, dataset_sampler=train_dataset_sampler, region_sampler=train_region_sampler, augmentation_pipeline=train_pipeline, num_workers=config_dict['num_train_workers']) # construct val data_loader # config_dict['val_dataset_path'] = './debug_data/train.pkl' # val_dataset = Dataset(load_path=config_dict['val_dataset_path']) # val_dataset_sampler = RandomDatasetSampler(dataset=val_dataset, # batch_size=config_dict['batch_size'], # shuffle=False, # ignore_last=False) # val_region_sampler = IdleRegionSampler() # config_dict['val_data_loader'] = DataLoader(dataset=val_dataset, # dataset_sampler=val_dataset_sampler, # region_sampler=val_region_sampler, # augmentation_pipeline=val_pipeline, # num_workers=config_dict['num_val_workers']) # evaluator # the evaluator should match the dataset # validation interval in epochs config_dict['val_interval'] = 0 # config_dict['val_annotation_path'] = './debug_data/annotations/instances_train2017.json' config_dict[ 'evaluator'] = None # COCOEvaluator(annotation_path=config_dict['val_annotation_path'],
# number of train data_loader workers config_dict['num_train_workers'] = 4 # number of val data_loader workers config_dict['num_val_workers'] = 2 # construct train data_loader config_dict['train_dataset_path'] = 'xxxxxxxxx' train_dataset = Dataset(load_path=config_dict['train_dataset_path']) train_dataset_sampler = COCORandomDatasetSampler(dataset=train_dataset, batch_size=config_dict['batch_size'], shuffle=True, ) train_region_sampler = TypicalCOCOTrainingRegionSampler(resize_shorter_range=(800,), resize_longer_limit=1333, pad_divisor=32) config_dict['train_data_loader'] = DataLoader(dataset=train_dataset, dataset_sampler=train_dataset_sampler, region_sampler=train_region_sampler, augmentation_pipeline=typical_coco_train_pipeline, num_workers=config_dict['num_train_workers']) # construct val data_loader config_dict['val_dataset_path'] = 'xxxxxxxxxx' val_dataset = Dataset(load_path=config_dict['val_dataset_path']) val_dataset_sampler = RandomDatasetSampler(dataset=val_dataset, batch_size=config_dict['batch_size'], shuffle=False, ignore_last=False) val_region_sampler = TypicalCOCOTrainingRegionSampler(resize_shorter_range=(800,), resize_longer_limit=1333, pad_divisor=32) config_dict['val_data_loader'] = DataLoader(dataset=val_dataset, dataset_sampler=val_dataset_sampler, region_sampler=val_region_sampler, augmentation_pipeline=typical_coco_val_pipeline,