def execute(self,userdata): """ - lookup closest trajectory from database - if it's a terminal state, we're done - warp it based on the current rope returns: done, not_done, failure """ xyz_new = np.squeeze(np.asarray(userdata.points)) #if args.obj == "cloth": xyz_new = voxel_downsample(xyz_new, .025) xyz_new_ds, ds_inds = downsample(xyz_new) dists_new = recognition.calc_geodesic_distances_downsampled_old(xyz_new,xyz_new_ds, ds_inds) ELOG.log('SelectTrajectory', 'xyz_new', xyz_new) ELOG.log('SelectTrajectory', 'xyz_new_ds', xyz_new_ds) ELOG.log('SelectTrajectory', 'dists_new', dists_new) if args.count_steps: candidate_demo_names = self.count2segnames[Globals.stage] else: candidate_demo_names = demos.keys() global last_selected_segment print 'Last selected segment:', last_selected_segment if args.human_select_demo: best_name = None while best_name not in demos: print 'Select demo from', demos.keys() best_name = raw_input('> ') else: from joblib import parallel costs_names = parallel.Parallel(n_jobs=-2)(parallel.delayed(calc_seg_cost)(seg_name, xyz_new_ds, dists_new) for seg_name in candidate_demo_names) #costs_names = [calc_seg_cost(seg_name, xyz_new_ds, dists_new) for seg_name in candidate_demo_names] #costs_names = [calc_seg_cost(seg_name) for seg_name in candidate_demo_names] ELOG.log('SelectTrajectory', 'costs_names', costs_names) _, best_name = min(costs_names) ELOG.log('SelectTrajectory', 'best_name', best_name) best_demo = demos[best_name] if best_demo["done"]: rospy.loginfo("best demo was a 'done' state") return "done" best_demo = demos[best_name] rospy.loginfo("best segment name: %s", best_name) last_selected_segment = best_name xyz_demo_ds = best_demo["cloud_xyz_ds"] ELOG.log('SelectTrajectory', 'xyz_demo_ds', xyz_demo_ds) if args.test: n_iter = 21 else: n_iter = 101 if args.use_rigid: self.f = registration.Translation2d() self.f.fit(xyz_demo_ds, xyz_new_ds) ELOG.log('SelectTrajectory', 'f', self.f) else: self.f, info = registration.tps_rpm(xyz_demo_ds, xyz_new_ds, plotting = 20, reg_init=1,reg_final=.01,n_iter=n_iter,verbose=False, return_full=True)#, interactive=True) ELOG.log('SelectTrajectory', 'f', self.f) ELOG.log('SelectTrajectory', 'f_info', info) if args.use_nr: rospy.loginfo('Using nonrigidity costs') from lfd import tps import scipy.spatial.distance as ssd pts_grip = [] for lr in "lr": if best_demo["arms_used"] in ["b", lr]: pts_grip.extend(best_demo["%s_gripper_tool_frame"%lr]["position"]) pts_grip = np.array(pts_grip) dist_to_rope = ssd.cdist(pts_grip, xyz_demo_ds).min(axis=1) pts_grip_near_rope = pts_grip[dist_to_rope < .04,:] pts_rigid = voxel_downsample(pts_grip_near_rope, .01) self.f.lin_ag, self.f.trans_g, self.f.w_ng, self.f.x_na = tps.tps_nr_fit_enhanced(info["x_Nd"], info["targ_Nd"], 0.01, pts_rigid, 0.001, method="newton", plotting=5) # print 'correspondences', self.f.corr_nm #################### Generate new trajectory ################## #### Plot original and warped point clouds ####### # orig_pose_array = conversions.array_to_pose_array(np.squeeze(best_demo["cloud_xyz_ds"]), "base_footprint") # warped_pose_array = conversions.array_to_pose_array(self.f.transform_points(np.squeeze(best_demo["cloud_xyz_ds"])), "base_footprint") # Globals.handles.append(Globals.rviz.draw_curve(orig_pose_array,rgba=(1,0,0,1),id=19024,type=Marker.CUBE_LIST)) # Globals.handles.append(Globals.rviz.draw_curve(warped_pose_array,rgba=(0,1,0,1),id=2983,type=Marker.CUBE_LIST)) #### Plot grid ######## mins = np.squeeze(best_demo["cloud_xyz"]).min(axis=0) maxes = np.squeeze(best_demo["cloud_xyz"]).max(axis=0) mins[2] -= .1 maxes[2] += .1 grid_handle = warping.draw_grid(Globals.rviz, self.f.transform_points, mins, maxes, 'base_footprint') Globals.handles.append(grid_handle) #### Actually generate the trajectory ########### warped_demo = warping.transform_demo_with_fingertips(self.f, best_demo) # if yes_or_no('dump warped demo?'): # import pickle # fname = '/tmp/warped_demo_' + str(np.random.randint(9999999999)) + '.pkl' # with open(fname, 'w') as f: # pickle.dump(warped_demo, f) # print 'saved to', fname ELOG.log('SelectTrajectory', 'warped_demo', warped_demo) def make_traj(warped_demo, inds=None, xyz_offset=0, feas_check_only=False): traj = {} total_feas_inds = 0 total_inds = 0 for lr in "lr": leftright = {"l":"left","r":"right"}[lr] if best_demo["arms_used"] in [lr, "b"]: if args.hard_table: clipinplace(warped_demo["l_gripper_tool_frame"]["position"][:,2],Globals.table_height+.032,np.inf) clipinplace(warped_demo["r_gripper_tool_frame"]["position"][:,2],Globals.table_height+.032,np.inf) pos = warped_demo["%s_gripper_tool_frame"%lr]["position"] + xyz_offset ori = warped_demo["%s_gripper_tool_frame"%lr]["orientation"] if inds is not None: pos, ori = pos[inds], ori[inds] if feas_check_only: feas_inds = lfd_traj.compute_feas_inds( pos, ori, Globals.pr2.robot.GetManipulator("%sarm"%leftright), "%s_gripper_tool_frame"%lr, check_collisions=True) traj["%s_arm_feas_inds"%lr] = feas_inds else: arm_traj, feas_inds = lfd_traj.make_joint_traj_by_graph_search( pos, ori, Globals.pr2.robot.GetManipulator("%sarm"%leftright), "%s_gripper_tool_frame"%lr, check_collisions=True) traj["%s_arm"%lr] = arm_traj traj["%s_arm_feas_inds"%lr] = feas_inds total_feas_inds += len(feas_inds) total_inds += len(pos) rospy.loginfo("%s arm: %i of %i points feasible", leftright, len(feas_inds), len(pos)) return traj, total_feas_inds, total_inds # Check if we need to move the base for reachability base_offset = np.array([0, 0, 0]) if args.use_base: # First figure out how much we need to move the base to maximize feasible points OFFSET = 0.1 XYZ_OFFSETS = np.array([[0., 0., 0.], [-OFFSET, 0, 0], [OFFSET, 0, 0], [0, -OFFSET, 0], [0, OFFSET, 0]]) inds_to_check = lfd_traj.where_near_rope(best_demo, xyz_demo_ds, add_other_points=30) need_to_move_base = False best_feas_inds, best_xyz_offset = -1, None for xyz_offset in XYZ_OFFSETS: _, n_feas_inds, n_total_inds = make_traj(warped_demo, inds=inds_to_check, xyz_offset=xyz_offset, feas_check_only=True) rospy.loginfo('Cloud offset %s has feas inds %d', str(xyz_offset), n_feas_inds) if n_feas_inds > best_feas_inds: best_feas_inds, best_xyz_offset = n_feas_inds, xyz_offset if n_feas_inds >= 0.99*n_total_inds: break if np.linalg.norm(best_xyz_offset) > 0.01: need_to_move_base = True base_offset = -best_xyz_offset rospy.loginfo('Best base offset: %s, with %d feas inds', str(base_offset), best_feas_inds) # Move the base if need_to_move_base: rospy.loginfo('Will move base.') userdata.base_offset = base_offset return 'move_base' else: rospy.loginfo('Will not move base.') Globals.pr2.update_rave() # calculate joint trajectory using IK trajectory = make_traj(warped_demo)[0] # fill in gripper/grab stuff for lr in "lr": leftright = {"l":"left","r":"right"}[lr] if best_demo["arms_used"] in [lr, "b"]: if len(trajectory["%s_arm_feas_inds"%lr]) == 0: return "failure" trajectory["%s_grab"%lr] = best_demo["%s_gripper_joint"%lr] < .07 trajectory["%s_gripper"%lr] = warped_demo["%s_gripper_joint"%lr] trajectory["%s_gripper"%lr][trajectory["%s_grab"%lr]] = 0 # smooth any discontinuities in the arm traj for lr in "lr": leftright = {"l":"left","r":"right"}[lr] if best_demo["arms_used"] in [lr, "b"]: trajectory["%s_arm"%lr], discont_times, n_steps = lfd_traj.smooth_disconts( trajectory["%s_arm"%lr], Globals.pr2.env, Globals.pr2.robot.GetManipulator("%sarm"%leftright), "%s_gripper_tool_frame"%lr, ignore_inds=[1] # ignore the 0--1 discontinuity, which is usually just moving from rest to the traj starting pose ) # after smoothing the arm traj, we need to fill in all other trajectories (in both arms) other_lr = 'r' if lr == 'l' else 'l' if best_demo["arms_used"] in [other_lr, "b"]: trajectory["%s_arm"%other_lr] = lfd_traj.fill_stationary(trajectory["%s_arm"%other_lr], discont_times, n_steps) for tmp_lr in 'lr': if best_demo["arms_used"] in [tmp_lr, "b"]: trajectory["%s_grab"%tmp_lr] = lfd_traj.fill_stationary(trajectory["%s_grab"%tmp_lr], discont_times, n_steps) trajectory["%s_gripper"%tmp_lr] = lfd_traj.fill_stationary(trajectory["%s_gripper"%tmp_lr], discont_times, n_steps) trajectory["%s_gripper"%tmp_lr][trajectory["%s_grab"%tmp_lr]] = 0 # plotting for lr in "lr": leftright = {"l":"left","r":"right"}[lr] if best_demo["arms_used"] in [lr, "b"]: # plot warped trajectory Globals.handles.append(Globals.rviz.draw_curve( conversions.array_to_pose_array( alternate(warped_demo["%s_gripper_l_finger_tip_link"%lr]["position"], warped_demo["%s_gripper_r_finger_tip_link"%lr]["position"]), "base_footprint" ), width=.001, rgba = (1,0,1,.4), type=Marker.LINE_LIST, ns='warped_finger_traj' )) # plot original trajectory Globals.handles.append(Globals.rviz.draw_curve( conversions.array_to_pose_array( alternate(best_demo["%s_gripper_l_finger_tip_link"%lr]["position"], best_demo["%s_gripper_r_finger_tip_link"%lr]["position"]), "base_footprint" ), width=.001, rgba = (0,1,1,.4), type=Marker.LINE_LIST, ns='demo_finger_traj' )) ELOG.log('SelectTrajectory', 'trajectory', trajectory) userdata.trajectory = trajectory if args.prompt_before_motion: consent = yes_or_no("trajectory ok?") else: consent = True if consent: return "not_done" else: return "failure"
def execute(self,userdata): """ - lookup closest trajectory from database - if it's a terminal state, we're done - warp it based on the current rope returns: done, not_done, failure """ xyz_new = np.squeeze(np.asarray(userdata.points)) #if args.obj == "cloth": xyz_new = voxel_downsample(xyz_new, .025) xyz_new_ds, ds_inds = downsample(xyz_new) dists_new = recognition.calc_geodesic_distances_downsampled_old(xyz_new,xyz_new_ds, ds_inds) if args.human_select_demo: raise NotImplementedError seg_name = trajectory_library.interactive_select_demo(demos) best_demo = demos[seg_name] pts0,_ = best_demo["cloud_xyz_ds"] pts1,_ = downsample(xyz_new) self.f = registration.tps_rpm(pts0, pts1, plotting = 4, reg_init=1,reg_final=args.reg_final,n_iter=40) else: if args.count_steps: candidate_demo_names = self.count2segnames[Globals.stage] else: candidate_demo_names = demos.keys() from joblib import parallel costs_names = parallel.Parallel(n_jobs=-2)(parallel.delayed(calc_seg_cost)(seg_name, xyz_new_ds, dists_new) for seg_name in candidate_demo_names) #costs_names = [calc_seg_cost(seg_name, xyz_new_ds, dists_new) for seg_name in candidate_demo_names] #costs_names = [calc_seg_cost(seg_name) for seg_name in candidate_demo_names] _, best_name = min(costs_names) best_demo = demos[best_name] if best_demo["done"]: rospy.loginfo("best demo was a 'done' state") return "done" best_demo = demos[best_name] rospy.loginfo("best segment name: %s", best_name) xyz_demo_ds = best_demo["cloud_xyz_ds"] if args.test: n_iter = 21 else: n_iter = 101 if args.use_rigid: self.f = registration.Translation2d() self.f.fit(xyz_demo_ds, xyz_new_ds) else: self.f = registration.tps_rpm(xyz_demo_ds, xyz_new_ds, plotting = 20, reg_init=1,reg_final=.01,n_iter=n_iter,verbose=False)#, interactive=True) np.savez('registration_data', xyz_demo_ds=xyz_demo_ds, xyz_new_ds=xyz_new_ds) # print 'correspondences', self.f.corr_nm #################### Generate new trajectory ################## #### Plot original and warped point clouds ####### # orig_pose_array = conversions.array_to_pose_array(np.squeeze(best_demo["cloud_xyz_ds"]), "base_footprint") # warped_pose_array = conversions.array_to_pose_array(self.f.transform_points(np.squeeze(best_demo["cloud_xyz_ds"])), "base_footprint") # Globals.handles.append(Globals.rviz.draw_curve(orig_pose_array,rgba=(1,0,0,1),id=19024,type=Marker.CUBE_LIST)) # Globals.handles.append(Globals.rviz.draw_curve(warped_pose_array,rgba=(0,1,0,1),id=2983,type=Marker.CUBE_LIST)) #### Plot grid ######## mins = np.squeeze(best_demo["cloud_xyz"]).min(axis=0) maxes = np.squeeze(best_demo["cloud_xyz"]).max(axis=0) mins[2] -= .1 maxes[2] += .1 grid_handle = warping.draw_grid(Globals.rviz, self.f.transform_points, mins, maxes, 'base_footprint') Globals.handles.append(grid_handle) #### Actually generate the trajectory ########### warped_demo = warping.transform_demo_with_fingertips(self.f, best_demo) if yes_or_no('dump warped demo?'): import pickle fname = '/tmp/warped_demo_' + str(np.random.randint(9999999999)) + '.pkl' with open(fname, 'w') as f: pickle.dump(warped_demo, f) print 'saved to', fname Globals.pr2.update_rave() trajectory = {} # calculate joint trajectory using IK for lr in "lr": leftright = {"l":"left","r":"right"}[lr] if best_demo["arms_used"] in [lr, "b"]: if args.hard_table: clipinplace(warped_demo["l_gripper_tool_frame"]["position"][:,2],Globals.table_height+.032,np.inf) clipinplace(warped_demo["r_gripper_tool_frame"]["position"][:,2],Globals.table_height+.032,np.inf) arm_traj, feas_inds = lfd_traj.make_joint_traj_by_graph_search( warped_demo["%s_gripper_tool_frame"%lr]["position"], warped_demo["%s_gripper_tool_frame"%lr]["orientation"], Globals.pr2.robot.GetManipulator("%sarm"%leftright), "%s_gripper_tool_frame"%lr, check_collisions=True ) if len(feas_inds) == 0: return "failure" trajectory["%s_arm"%lr] = arm_traj trajectory["%s_grab"%lr] = best_demo["%s_gripper_joint"%lr] < .07 trajectory["%s_gripper"%lr] = warped_demo["%s_gripper_joint"%lr] trajectory["%s_gripper"%lr][trajectory["%s_grab"%lr]] = 0 # smooth any discontinuities in the arm traj for lr in "lr": leftright = {"l":"left","r":"right"}[lr] if best_demo["arms_used"] in [lr, "b"]: trajectory["%s_arm"%lr], discont_times, n_steps = lfd_traj.smooth_disconts( trajectory["%s_arm"%lr], Globals.pr2.env, Globals.pr2.robot.GetManipulator("%sarm"%leftright), "%s_gripper_tool_frame"%lr ) # after smoothing the arm traj, we need to fill in all other trajectories (in both arms) other_lr = 'r' if lr == 'l' else 'l' if best_demo["arms_used"] in [other_lr, "b"]: trajectory["%s_arm"%other_lr] = lfd_traj.fill_stationary(trajectory["%s_arm"%other_lr], discont_times, n_steps) for tmp_lr in 'lr': if best_demo["arms_used"] in [tmp_lr, "b"]: trajectory["%s_grab"%tmp_lr] = lfd_traj.fill_stationary(trajectory["%s_grab"%tmp_lr], discont_times, n_steps) trajectory["%s_gripper"%tmp_lr] = lfd_traj.fill_stationary(trajectory["%s_gripper"%tmp_lr], discont_times, n_steps) trajectory["%s_gripper"%tmp_lr][trajectory["%s_grab"%tmp_lr]] = 0 # plotting for lr in "lr": leftright = {"l":"left","r":"right"}[lr] if best_demo["arms_used"] in [lr, "b"]: # plot warped trajectory Globals.handles.append(Globals.rviz.draw_curve( conversions.array_to_pose_array( alternate(warped_demo["%s_gripper_l_finger_tip_link"%lr]["position"], warped_demo["%s_gripper_r_finger_tip_link"%lr]["position"]), "base_footprint" ), width=.001, rgba = (1,0,1,.4), type=Marker.LINE_LIST, ns='warped_finger_traj' )) # plot original trajectory Globals.handles.append(Globals.rviz.draw_curve( conversions.array_to_pose_array( alternate(best_demo["%s_gripper_l_finger_tip_link"%lr]["position"], best_demo["%s_gripper_r_finger_tip_link"%lr]["position"]), "base_footprint" ), width=.001, rgba = (0,1,1,.4), type=Marker.LINE_LIST, ns='demo_finger_traj' )) userdata.trajectory = trajectory if args.prompt_before_motion: consent = yes_or_no("trajectory ok?") else: consent = True if consent: return "not_done" else: return "failure"
def execute(self, userdata): """ - lookup closest trajectory from database - if it's a terminal state, we're done - warp it based on the current rope returns: done, not_done, failure """ xyz_new = np.squeeze(np.asarray(userdata.points)) #if args.obj == "cloth": xyz_new = voxel_downsample(xyz_new, .025) xyz_new_ds, ds_inds = downsample(xyz_new) dists_new = recognition.calc_geodesic_distances_downsampled_old( xyz_new, xyz_new_ds, ds_inds) if args.human_select_demo: raise NotImplementedError seg_name = trajectory_library.interactive_select_demo(demos) best_demo = demos[seg_name] pts0, _ = best_demo["cloud_xyz_ds"] pts1, _ = downsample(xyz_new) self.f = registration.tps_rpm(pts0, pts1, plotting=4, reg_init=1, reg_final=args.reg_final, n_iter=40) else: if args.count_steps: candidate_demo_names = self.count2segnames[Globals.stage] else: candidate_demo_names = demos.keys() from joblib import parallel costs_names = parallel.Parallel(n_jobs=-2)( parallel.delayed(calc_seg_cost)(seg_name, xyz_new_ds, dists_new) for seg_name in candidate_demo_names) #costs_names = [calc_seg_cost(seg_name, xyz_new_ds, dists_new) for seg_name in candidate_demo_names] #costs_names = [calc_seg_cost(seg_name) for seg_name in candidate_demo_names] _, best_name = min(costs_names) best_demo = demos[best_name] if best_demo["done"]: rospy.loginfo("best demo was a 'done' state") return "done" best_demo = demos[best_name] rospy.loginfo("best segment name: %s", best_name) xyz_demo_ds = best_demo["cloud_xyz_ds"] if args.test: n_iter = 21 else: n_iter = 101 if args.use_rigid: self.f = registration.Translation2d() self.f.fit(xyz_demo_ds, xyz_new_ds) else: self.f = registration.tps_rpm(xyz_demo_ds, xyz_new_ds, plotting=20, reg_init=1, reg_final=.01, n_iter=n_iter, verbose=False) #, interactive=True) np.savez('registration_data', xyz_demo_ds=xyz_demo_ds, xyz_new_ds=xyz_new_ds) # print 'correspondences', self.f.corr_nm #################### Generate new trajectory ################## #### Plot original and warped point clouds ####### # orig_pose_array = conversions.array_to_pose_array(np.squeeze(best_demo["cloud_xyz_ds"]), "base_footprint") # warped_pose_array = conversions.array_to_pose_array(self.f.transform_points(np.squeeze(best_demo["cloud_xyz_ds"])), "base_footprint") # Globals.handles.append(Globals.rviz.draw_curve(orig_pose_array,rgba=(1,0,0,1),id=19024,type=Marker.CUBE_LIST)) # Globals.handles.append(Globals.rviz.draw_curve(warped_pose_array,rgba=(0,1,0,1),id=2983,type=Marker.CUBE_LIST)) #### Plot grid ######## mins = np.squeeze(best_demo["cloud_xyz"]).min(axis=0) maxes = np.squeeze(best_demo["cloud_xyz"]).max(axis=0) mins[2] -= .1 maxes[2] += .1 grid_handle = warping.draw_grid(Globals.rviz, self.f.transform_points, mins, maxes, 'base_footprint') Globals.handles.append(grid_handle) #### Actually generate the trajectory ########### warped_demo = warping.transform_demo_with_fingertips(self.f, best_demo) if yes_or_no('dump warped demo?'): import pickle fname = '/tmp/warped_demo_' + str( np.random.randint(9999999999)) + '.pkl' with open(fname, 'w') as f: pickle.dump(warped_demo, f) print 'saved to', fname Globals.pr2.update_rave() trajectory = {} # calculate joint trajectory using IK for lr in "lr": leftright = {"l": "left", "r": "right"}[lr] if best_demo["arms_used"] in [lr, "b"]: if args.hard_table: clipinplace( warped_demo["l_gripper_tool_frame"]["position"][:, 2], Globals.table_height + .032, np.inf) clipinplace( warped_demo["r_gripper_tool_frame"]["position"][:, 2], Globals.table_height + .032, np.inf) arm_traj, feas_inds = lfd_traj.make_joint_traj_by_graph_search( warped_demo["%s_gripper_tool_frame" % lr]["position"], warped_demo["%s_gripper_tool_frame" % lr]["orientation"], Globals.pr2.robot.GetManipulator("%sarm" % leftright), "%s_gripper_tool_frame" % lr, check_collisions=True) if len(feas_inds) == 0: return "failure" trajectory["%s_arm" % lr] = arm_traj trajectory["%s_grab" % lr] = best_demo["%s_gripper_joint" % lr] < .07 trajectory["%s_gripper" % lr] = warped_demo["%s_gripper_joint" % lr] trajectory["%s_gripper" % lr][trajectory["%s_grab" % lr]] = 0 # smooth any discontinuities in the arm traj for lr in "lr": leftright = {"l": "left", "r": "right"}[lr] if best_demo["arms_used"] in [lr, "b"]: trajectory[ "%s_arm" % lr], discont_times, n_steps = lfd_traj.smooth_disconts( trajectory["%s_arm" % lr], Globals.pr2.env, Globals.pr2.robot.GetManipulator("%sarm" % leftright), "%s_gripper_tool_frame" % lr) # after smoothing the arm traj, we need to fill in all other trajectories (in both arms) other_lr = 'r' if lr == 'l' else 'l' if best_demo["arms_used"] in [other_lr, "b"]: trajectory["%s_arm" % other_lr] = lfd_traj.fill_stationary( trajectory["%s_arm" % other_lr], discont_times, n_steps) for tmp_lr in 'lr': if best_demo["arms_used"] in [tmp_lr, "b"]: trajectory["%s_grab" % tmp_lr] = lfd_traj.fill_stationary( trajectory["%s_grab" % tmp_lr], discont_times, n_steps) trajectory["%s_gripper" % tmp_lr] = lfd_traj.fill_stationary( trajectory["%s_gripper" % tmp_lr], discont_times, n_steps) trajectory["%s_gripper" % tmp_lr][trajectory["%s_grab" % tmp_lr]] = 0 # plotting for lr in "lr": leftright = {"l": "left", "r": "right"}[lr] if best_demo["arms_used"] in [lr, "b"]: # plot warped trajectory Globals.handles.append( Globals.rviz.draw_curve(conversions.array_to_pose_array( alternate( warped_demo["%s_gripper_l_finger_tip_link" % lr]["position"], warped_demo["%s_gripper_r_finger_tip_link" % lr]["position"]), "base_footprint"), width=.001, rgba=(1, 0, 1, .4), type=Marker.LINE_LIST, ns='warped_finger_traj')) # plot original trajectory Globals.handles.append( Globals.rviz.draw_curve(conversions.array_to_pose_array( alternate( best_demo["%s_gripper_l_finger_tip_link" % lr]["position"], best_demo["%s_gripper_r_finger_tip_link" % lr]["position"]), "base_footprint"), width=.001, rgba=(0, 1, 1, .4), type=Marker.LINE_LIST, ns='demo_finger_traj')) userdata.trajectory = trajectory if args.prompt_before_motion: consent = yes_or_no("trajectory ok?") else: consent = True if consent: return "not_done" else: return "failure"