コード例 #1
0
    async def get_shaped_timeseries(self, query: ShapeQuery) -> ModelResult:
        logger.debug(
            "\n--->>> Shape Query Called successfully on %s Model!! <<<---" % self.name)

        # logger.debug("Spatial Component is: \n%s" % str(query.spatial))
        # logger.debug("Temporal Component is: \n%s" % str(query.temporal))
        #
        # logger.debug("\nDerived LAT1: %s\nDerived LON1: %s\nDerived LAT2: %s\nDerived LON2: %s" %
        #              query.spatial.expanded(0.05))

        sr = await (self.get_shaped_resultcube(query))
        sr.load()
        dps = []

        for r in sr['time']:
            t = r['time'].values
            o = sr.sel(time=t)
            p = self.outputs['readings']['prefix']
            df = o[p].to_dataframe()
            df = df[p]
            # TODO - This is a quick hack to massage the datetime format into a markup suitable for D3 & ngx-charts!
            m = df.mean()
            dps.append(DataPoint(observation_time=str(t).replace('.000000000', '.000Z'),
                                 value=m,
                                 mean=m,
                                 minimum=df.min(),
                                 maximum=df.max(),
                                 deviation=0))

        asyncio.sleep(1)

        return ModelResult(model_name=self.name, data_points=dps)
コード例 #2
0
    async def get_datapoint_for_param(b, param):
        """
        Takes the mean min and max values for datapoints at a particular time slice.
        :param b:
        :param param:
        :return:
        """

        bin_ = b.to_dataframe()

        # TODO - This is a quick hack to massage the datetime format into a markup suitable for D3 & ngx-charts!
        tvalue = str(b["time"].values).replace('.000000000', '.000Z')
        avalue = bin_[param].median()

        logger.debug(
            "\n>>>> Datapoint creation. (time={}, value={})".format(tvalue, avalue))

        asyncio.sleep(1)

        return DataPoint(observation_time=tvalue,
                         value=avalue,
                         mean=bin_[param].mean(),
                         minimum=bin_[param].min(),
                         maximum=bin_[param].max(),
                         deviation=bin_[param].std())
コード例 #3
0
    def dummy_single(v):
        # Dummy data for testing...
        # value, mean, min, max, std
        five_values = [np.random.random_sample() for j in range(5)]

        five_values = pd.DataFrame(five_values)
        # print(five_values)
        return DataPoint(
            dt.date(2018, 1, v + 1).strftime("%Y-%m-%dT00:00:00.000Z"),
            five_values[0].mean(), five_values[0].mean(), five_values[0].min(),
            five_values[0].max(), five_values[0].std())
コード例 #4
0
    def dummy_series():
        response = []
        for i in range(1, 30):

            # Dummy data for testing...
            # value, mean, min, max, std
            five_values = [np.random.random_sample() for j in range(5)]

            five_values = pd.DataFrame(five_values)
            # print(five_values)
            response.append(
                DataPoint(
                    dt.date(2018, 1, i).strftime("%Y-%m-%dT00:00:00.000Z"),
                    five_values[0].mean(), five_values[0].mean(),
                    five_values[0].min(), five_values[0].max(),
                    five_values[0].std()))

        return response
コード例 #5
0
    def subscribe(self, observer):
        if dev.DEBUG:
            dps = []
            for i in range(3):
                dps.append(
                    DataPoint(observation_time=dt.date(2018, 5, 17),
                              value=i,
                              mean=i,
                              minimum=i,
                              maximum=i,
                              deviation=0))
                observer.on_next(
                    ModelResult(model_name='test', data_points=dps))
            observer.on_completed()
        else:
            dps = []

        pass
コード例 #6
0
    async def get_shaped_timeseries(self, query: ShapeQuery) -> ModelResult:
        logger.debug(
            "\n--->>> Shape Query Called successfully on %s Model!! <<<---" % self.name)
        logger.debug("Spatial Component is: \n%s" % str(query.spatial))
        logger.debug("Temporal Component is: \n%s" % str(query.temporal))
        logger.debug("\nDerived LAT1: %s\nDerived LON1: %s\nDerived LAT2: %s\nDerived LON2: %s" %
                     query.spatial.expanded(0.05))

        dps = []
        try:
            sr = await (self.get_shaped_resultcube(query))
            sr.load()

            # Values in AWRA are in range 0..1
            # Normalise to between 0-100%
            # sr[self.outputs["readings"]["prefix"]] *= 100

            if dev.DEBUG:
                logger.debug("Shaped ResultCube is: \n%s" % sr)

            for r in sr['time']:
                t = r['time'].values
                o = sr.sel(time=t)
                p = self.outputs['readings']['prefix']
                df = o[p].to_dataframe()
                df = df[p]
                # TODO - This is a quick hack to massage the datetime format into a markup suitable for D3 & ngx-charts!
                m = df.median()
                dps.append(DataPoint(observation_time=str(t).replace('.000000000', '.000Z'),
                                     value=m,
                                     mean=df.mean(),
                                     minimum=df.min(),
                                     maximum=df.max(),
                                     deviation=0))
        except FileNotFoundError:
            logger.exception('Files not found for date range.')

        asyncio.sleep(1)
        return ModelResult(model_name=self.name, data_points=dps)