def test_degree_analysis_on_nodes(self, log_data, nicks, nick_same_list): update_expected_output_directory(log_data) message_number_graph = network.message_number_graph( log_data, nicks, nick_same_list) message_time_graph = network.message_time_graph( log_data, nicks, nick_same_list) nick_change_graph = user.nick_change_graph(log_data) degree_anal_message_number = network.degree_analysis_on_graph( message_number_graph) degree_anal_message_time = network.degree_analysis_on_graph( message_time_graph) degree_anal_nick_change = network.degree_analysis_on_graph( nick_change_graph) expected_analysis_msg_number = [] expected_analysis_msg_time = [] expected_analysis_nick_change = [] unjson('degree_anal_message_number.json', expected_analysis_msg_number) unjson('degree_anal_message_time.json', expected_analysis_msg_time) unjson('degree_anal_nick_change.json', expected_analysis_nick_change) self.assertDictEqual(degree_anal_message_number, expected_analysis_msg_number[0], msg=None) self.assertDictEqual(degree_anal_message_time, expected_analysis_msg_time[0], msg=None) self.assertDictEqual(degree_anal_nick_change, expected_analysis_nick_change[0], msg=None)
def test_degree_distribution_multi_channel(self): log_data = reader.linux_input(self.log_data_dir, ["ALL"], self.start_date, self.end_date) expected_result_CC_degree_curve_fit = util.load_from_disk( self.current_directory + '/data/output/CC_degree_curve_fit') expected_result_CU_degree_curve_fit = util.load_from_disk( self.current_directory + '/data/output/CU_degree_curve_fit') expected_result_UU_degree_curve_fit = util.load_from_disk( self.current_directory + '/data/output/UU_degree_curve_fit') nicks, nick_same_list, channels_for_user, nick_channel_dict, nicks_hash, channels_hash = nickTracker.nick_tracker( log_data, True) dict_out, graph = network.channel_user_presence_graph_and_csv( nicks, nick_same_list, channels_for_user, nick_channel_dict, nicks_hash, channels_hash) degree_anal_message_number_CC = network.degree_analysis_on_graph( dict_out["CC"]["graph"], directed=False) degree_anal_message_number_UU = network.degree_analysis_on_graph( dict_out["UU"]["graph"], directed=False) degree_anal_message_number_CU = network.degree_analysis_on_graph( dict_out["CU"]["graph"], directed=False) Y = degree_anal_message_number_CU["degree"]["raw_for_vis"][1:] data = [(i, Y[i]) for i in range(len(Y))] CU_truncated, cutoff = channel.truncate_table(data, 0.5) CU_T = [data[1] for data in list(CU_truncated)] expected_output_CC_degree_curve_fit = vis.generate_log_plots( degree_anal_message_number_CC["degree"]["raw_for_vis"], self.current_directory, "CC_degree_curve_fit") expected_output_CU_degree_curve_fit = vis.generate_log_plots( CU_T, self.current_directory, "CU_degree_curve_fit") expected_output_UU_degree_curve_fit = vis.generate_log_plots( degree_anal_message_number_UU["degree"]["raw_for_vis"], self.current_directory, "UU_degree_curve_fit") os.remove(self.current_directory + "/CC_degree_curve_fit" + ".png") os.remove(self.current_directory + "/CU_degree_curve_fit" + ".png") os.remove(self.current_directory + "/UU_degree_curve_fit" + ".png") self.assertEqual(expected_result_CC_degree_curve_fit, expected_output_CC_degree_curve_fit) self.assertEqual(expected_result_CU_degree_curve_fit, expected_output_CU_degree_curve_fit) self.assertEqual(expected_result_UU_degree_curve_fit, expected_output_UU_degree_curve_fit)
def box_plot_for_degree(log_directory, output_directory, channel_name): cutoff = 0 for channel_name_iter in channel_name: out_degree_fit_parameters = np.zeros((12, 4)) in_degree_fit_parameters = np.zeros((12, 4)) total_degree_fit_parameters = np.zeros((12, 4)) for month in range(1, 13): log_data = reader.linux_input(log_directory, channel_name_iter, "2013-" + str(month) + "-1", "2013-" + str(month) + "-31") nicks, nick_same_list = nickTracker.nick_tracker(log_data) message_number_graph = network.message_number_graph( log_data, nicks, nick_same_list, False) degree_anal_message_number = network.degree_analysis_on_graph( message_number_graph) out_degree_fit_parameters[month - 1] = vis.generate_log_plots( degree_anal_message_number["out_degree"]["raw_for_vis"], output_directory, channel_name_iter[0]) in_degree_fit_parameters[month - 1] = vis.generate_log_plots( degree_anal_message_number["in_degree"]["raw_for_vis"], output_directory, channel_name_iter[0]) total_degree_fit_parameters[month - 1] = vis.generate_log_plots( degree_anal_message_number["total_degree"]["raw_for_vis"], output_directory, channel_name_iter[0]) parameters = ['slope', 'intercept', 'r_square'] for para_ind in range(len(parameters)): vis.box_plot( out_degree_fit_parameters[:, para_ind], output_directory, "out_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) vis.box_plot( in_degree_fit_parameters[:, para_ind], output_directory, "in_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) vis.box_plot( total_degree_fit_parameters[:, para_ind], output_directory, "total_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) saver.save_csv([out_degree_fit_parameters[:, para_ind].tolist()], output_directory, "out_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) saver.save_csv([in_degree_fit_parameters[:, para_ind].tolist()], output_directory, "in_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) saver.save_csv([total_degree_fit_parameters[:, para_ind].tolist()], output_directory, "total_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff))
def test_message_exchange_network(self): log_data = reader.linux_input(self.log_data_dir, ["#kubuntu-devel"], self.start_date, self.end_date) expected_result = util.load_from_disk( self.current_directory + '/data/output/degree_anal_message_number_graph_kubuntu-devel') nicks, nick_same_list = nickTracker.nick_tracker(log_data) message_number_graph = network.message_number_graph( log_data, nicks, nick_same_list, False) expected_output = network.degree_analysis_on_graph( message_number_graph) self.assertEqual(expected_result, expected_output)
def test_degree_analysis_on_nodes(self, log_data, nicks, nick_same_list): update_expected_output_directory(log_data) message_number_graph = network.message_number_graph(log_data, nicks, nick_same_list) message_time_graph = network.message_time_graph(log_data, nicks, nick_same_list) nick_change_graph = user.nick_change_graph(log_data) degree_anal_message_number = network.degree_analysis_on_graph(message_number_graph) degree_anal_message_time = network.degree_analysis_on_graph(message_time_graph) degree_anal_nick_change = network.degree_analysis_on_graph(nick_change_graph) expected_analysis_msg_number = [] expected_analysis_msg_time = [] expected_analysis_nick_change = [] unjson('degree_anal_message_number.json', expected_analysis_msg_number) unjson('degree_anal_message_time.json', expected_analysis_msg_time) unjson('degree_anal_nick_change.json', expected_analysis_nick_change) self.assertDictEqual(degree_anal_message_number, expected_analysis_msg_number[0], msg=None) self.assertDictEqual(degree_anal_message_time, expected_analysis_msg_time[0], msg=None) self.assertDictEqual(degree_anal_nick_change, expected_analysis_nick_change[0], msg=None)
def test_degree_analysis_on_graph(self): directed_graph = util.load_from_disk(current_directory + '/data/directed_graph') undirected_graph = util.load_from_disk(current_directory + '/data/undirected_graph') directed_deg_analysis_expected = util.load_from_disk( current_directory + '/data/directed_deg_analysis_result') undirected_deg_analysis_expected = util.load_from_disk( current_directory + '/data/undirected_deg_anlaysis_result') capturedOutput = StringIO.StringIO() sys.stdout = capturedOutput directed_deg_analysis = network.degree_analysis_on_graph( directed_graph, directed=True) undirected_deg_analysis = network.degree_analysis_on_graph( undirected_graph, directed=False) sys.stdout = sys.__stdout__ capturedOutput.close() self.assertEqual(directed_deg_analysis, directed_deg_analysis_expected) self.assertEqual(undirected_deg_analysis, undirected_deg_analysis_expected)
def test_degree_distribution_message_exchange_network(self): degree_type = ["out_degree", "in_degree", "total_degree"] log_data = reader.linux_input(self.log_data_dir, ["#kubuntu-devel"], self.start_date, self.end_date) expected_result = util.load_from_disk( self.current_directory + '/data/output/message_exchange_network_curve_fit') nicks, nick_same_list = nickTracker.nick_tracker(log_data) message_number_graph = network.message_number_graph( log_data, nicks, nick_same_list, False) degree_anal_message_number = network.degree_analysis_on_graph( message_number_graph) expected_output = {} for dtype in degree_type: expected_output[dtype] = vis.generate_log_plots( degree_anal_message_number[dtype]["raw_for_vis"], self.current_directory, "#kubuntu-devel" + dtype) os.remove(self.current_directory + "/#kubuntu-devel" + dtype + ".png") self.assertEqual(expected_result, expected_output)
channel_name = config.CHANNEL_NAME starting_date = config.STARTING_DATE ending_date = config.ENDING_DATE output_directory = config.OUTPUT_DIRECTORY # ============== INPUT================== log_data = reader.linux_input(log_directory, channel_name, starting_date, ending_date) nicks, nick_same_list = nickTracker.nick_tracker(log_data) # ============== ANALYSIS ============= message_number_graph = network.message_number_graph(log_data, nicks, nick_same_list, False) message_number_graph_day_list = network.message_number_graph( log_data, nicks, nick_same_list, True) degree_anal_message_numder = network.degree_analysis_on_graph( message_number_graph) message_time_graph_list = network.message_time_graph(log_data, nicks, nick_same_list, True) message_time_graph = network.message_time_graph(log_data, nicks, nick_same_list, False) out_degree_node_number, in_degree_node_number, total_degree_node_number = network.degree_node_number_csv( log_data, nicks, nick_same_list) nick_change_graph_list = user.nick_change_graph(log_data, True) bin_matrix, total_messages = network.message_number_bins_csv( log_data, nicks, nick_same_list) conv_len, conv_ref_time = channel.conv_len_conv_refr_time( log_data, nicks, nick_same_list) resp_time = channel.response_time(log_data, nicks, nick_same_list) user.keywords_clusters(log_data, nicks, nick_same_list) network.degree_analysis_on_graph(message_number_graph)
channel_name = config.CHANNEL_NAME starting_date = config.STARTING_DATE ending_date = config.ENDING_DATE output_directory = config.OUTPUT_DIRECTORY degree_type = ["out_degree", "in_degree", "total_degree"] presence_type = ["CC", "UU", "CU"] # ============== INPUT================== log_data = reader.linux_input(log_directory, channel_name, starting_date, ending_date) nicks, nick_same_list = nickTracker.nick_tracker(log_data) # ============== ANALYSIS ============= message_number_graph = network.message_number_graph(log_data, nicks, nick_same_list, False) degree_anal_message_number = network.degree_analysis_on_graph(message_number_graph) bin_matrix, total_messages = network.message_number_bins_csv(log_data, nicks, nick_same_list) data = [[i for i in range(len(bin_matrix[0]))]] data.append([sum(i) for i in zip(*bin_matrix)]) default_cutoff = config.CUTOFF_PERCENTILE percentiles = [0, 1, 5, 10, 20] for cutoff in percentiles: config.CUTOFF_PERCENTILE = cutoff truncated_rt, rt_cutoff_time = channel.response_time(log_data, nicks, nick_same_list, config.CUTOFF_PERCENTILE) conv_len, conv_ref_time = channel.conv_len_conv_refr_time(log_data, nicks, nick_same_list, rt_cutoff_time, config.CUTOFF_PERCENTILE) saver.save_csv(conv_len, output_directory, "conv_len-cutoff-" + str(cutoff)) saver.save_csv(truncated_rt, output_directory, "resp_time-cutoff-" + str(cutoff)) saver.save_csv(conv_ref_time, output_directory, "conv_ref_time-cutoff-" + str(cutoff))
from lib.analysis import network, channel, user, community log_directory = config.LOG_DIRECTORY channel_name = config.CHANNEL_NAME starting_date = config.STARTING_DATE ending_date = config.ENDING_DATE output_directory = config.OUTPUT_DIRECTORY # ============== INPUT================== log_data = reader.linux_input(log_directory, channel_name, starting_date, ending_date) nicks, nick_same_list = nickTracker.nick_tracker(log_data) # ============== ANALYSIS ============= message_number_graph = network.message_number_graph(log_data, nicks, nick_same_list, False) message_number_graph_day_list = network.message_number_graph(log_data, nicks, nick_same_list, True) degree_anal_message_numder = network.degree_analysis_on_graph(message_number_graph) message_time_graph_list = network.message_time_graph(log_data, nicks, nick_same_list, True) message_time_graph = network.message_time_graph(log_data, nicks, nick_same_list, False) out_degree_node_number, in_degree_node_number, total_degree_node_number = network.degree_node_number_csv(log_data, nicks, nick_same_list) nick_change_graph_list = user.nick_change_graph(log_data, True) bin_matrix, total_messages = network.message_number_bins_csv(log_data, nicks, nick_same_list) conv_len, conv_ref_time = channel.conv_len_conv_refr_time(log_data, nicks, nick_same_list) resp_time = channel.response_time(log_data, nicks, nick_same_list) user.keywords_clusters(log_data, nicks, nick_same_list) network.degree_analysis_on_graph(message_number_graph) # adjCC_graph, adjCC_membership = community.infomap_igraph(ig_graph=None, net_file_location="/home/rohan/Desktop/adjCC.net") # ============== OUTPUT ================ saver.draw_nx_graph(message_number_graph, output_directory, "message_number_graph")
def box_plot_for_degree(log_directory, output_directory, channel_name, start_date, end_date): """ Correlational : statistical distribution of curve fit parameters generated for degree distribution. The function takes the given time duration and selects one month at a time for generation of a degree distribution sample. Each degree distribution sample shall have 3 curve fit parameters namely slope, intercept & r_square. The function collects these parameters for all the months of the given time duration. The function produces box plot separately for each parameter. Args: log_directory(str): path to the location of Logs output_directory(str): path to the location where the results are to be stored channel_name(list): channels for which the analysis is to be done. start_date(datetime): starting date for the logs to be analysed. This has to be the beginning of the month. end_date(datetime): ending date for which the logs are to be analysed. This has to be the end of the month. Returns: null """ start_date = start_date.strptime('%Y-%m-%d') end_date = end_date.strptime('%Y-%m-%d') cutoff = 0 for channel_name_iter in channel_name: out_degree_fit_parameters = np.zeros((12, 4)) in_degree_fit_parameters = np.zeros((12, 4)) total_degree_fit_parameters = np.zeros((12, 4)) for dt in rrule(MONTHLY, dtstart=start_date, until=end_date): last_day_of_the_month = dt + relativedelta( months=1) - datetime.timedelta(days=1) # for month in range(1, 13): log_data = reader.linux_input( log_directory, channel_name_iter, dt.strftime("%Y-%m-%d"), last_day_of_the_month.strftime("%Y-%m-%d")) nicks, nick_same_list = nickTracker.nick_tracker(log_data) message_number_graph = network.message_number_graph( log_data, nicks, nick_same_list, False) degree_anal_message_number = network.degree_analysis_on_graph( message_number_graph) out_degree_fit_parameters[dt.month - 1] = vis.generate_log_plots( degree_anal_message_number["out_degree"]["raw_for_vis"], output_directory, channel_name_iter[0]) in_degree_fit_parameters[dt.month - 1] = vis.generate_log_plots( degree_anal_message_number["in_degree"]["raw_for_vis"], output_directory, channel_name_iter[0]) total_degree_fit_parameters[dt.month - 1] = vis.generate_log_plots( degree_anal_message_number["total_degree"]["raw_for_vis"], output_directory, channel_name_iter[0]) parameters = ['slope', 'intercept', 'r_square'] for para_ind in range(len(parameters)): vis.box_plot( out_degree_fit_parameters[:, para_ind], output_directory, "out_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) vis.box_plot( in_degree_fit_parameters[:, para_ind], output_directory, "in_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) vis.box_plot( total_degree_fit_parameters[:, para_ind], output_directory, "total_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) saver.save_csv([out_degree_fit_parameters[:, para_ind].tolist()], output_directory, "out_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) saver.save_csv([in_degree_fit_parameters[:, para_ind].tolist()], output_directory, "in_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff)) saver.save_csv([total_degree_fit_parameters[:, para_ind].tolist()], output_directory, "total_degree_" + str(parameters[para_ind]) + "_2013_" + channel_name_iter[0] + "_cut_" + str(cutoff))