コード例 #1
0
 def set_contour(self, Ncontour=22):
     vertices = [np.array(seg.vertices[0]) for seg in self.segs]
     l_side = fun.flatten_list([v[:int(len(v) / 2)] for v in vertices])
     r_side = fun.flatten_list(
         [np.flip(v[int(len(v) / 2):], axis=0) for v in vertices])
     r_side.reverse()
     total_contour = l_side + r_side
     if len(total_contour) > Ncontour:
         seed(1)
         contour = [
             total_contour[i]
             for i in sorted(sample(range(len(total_contour)), Ncontour))
         ]
     else:
         contour = total_contour
     # self.contour = contour[ConvexHull(contour).vertices].tolist()
     return contour
コード例 #2
0
def xy(points, flat=False):
    if type(points) == str:
        return [f'{points}_x', f'{points}_y']
    elif type(points) == list:
        t=[[f'{p}_x', f'{p}_y'] for p in points]
        if flat :
            return fun.flatten_list(t)
        else :
            return t
コード例 #3
0
ファイル: batch_lib.py プロジェクト: bagjohn/larvaworld-1
def generate_gain_space(pars, ranges, Ngrid, values=None):
    if len(pars) != 1 or len(Ngrid) != 1 or len(ranges) != 1:
        raise ValueError(
            'There must be a single parameter, range and space step')
    r, s = ranges[0], Ngrid[0]
    if values is None:
        values = np.linspace(r[0], r[1], s)
    values = [flatten_list([[[a, b] for a in values] for b in values])]
    values_dict = dict(zip(pars, values))
    space = cartesian_product(values_dict)
    return space
コード例 #4
0
def data_collection_config(dataset, sim_params):
    d = dataset
    effectors = [e for e in sim_params['collect_effectors']]
    # effectors = [e for e in sim_params['collect_effectors'] if component_params[e]]
    step_pars = list(
        set(
            fun.flatten_list(
                [effector_collection[e]['step'] for e in effectors])))
    end_pars = list(
        set(
            fun.flatten_list(
                [effector_collection[e]['endpoint'] for e in effectors])))

    if sim_params['collect_midline']:
        step_pars += fun.flatten_list(d.points_xy)
    if sim_params['collect_contour']:
        step_pars += fun.flatten_list(d.contour_xy)
    collected_pars = {
        'step': sim_params['step_pars'] + step_pars,
        'endpoint': sim_params['end_pars'] + end_pars
    }
    return collected_pars
コード例 #5
0
def collection_conf(dataset, collections):
    d = dataset
    step_pars = []
    end_pars = []
    for c in collections:
        if c == 'midline':
            step_pars += list(midline_xy_pars(N=d.Nsegs).keys())
            # step_pars += fun.flatten_list(d.points_xy)
        elif c == 'contour':
            step_pars += fun.flatten_list(d.contour_xy)
        else:
            step_pars += effector_collection[c]['step']
            end_pars += effector_collection[c]['endpoint']

    collected_pars = {'step': fun.unique_list(step_pars),
                      'endpoint': fun.unique_list(end_pars)}
    return collected_pars
コード例 #6
0
ファイル: batch_lib.py プロジェクト: bagjohn/larvaworld-1
def deb_analysis(traj):
    data_dir = traj.config.dataset_path
    parent_dir = traj.config.dir_path
    df = save_results_df(traj)
    runs_idx, runs, par_names, par_full_names, par_values, res_names, res_values = get_results(
        traj, res_names=None)
    if len(par_names) == 2:
        # z0s=[1.0,0.5,1.0]
        for i in range(len(res_names)):
            r = res_names[i]
            labels = par_names + [r]
            plot_3pars(df, labels, save_to=traj.config.dir_path, pref=r)
            # plot_3pars(df, labels, z0=z0s[i], save_to = traj.config.dir_path, pref=r)

    dirs = [f'{data_dir}/{dir}' for dir in os.listdir(data_dir)]
    dirs.sort()
    ds = [LarvaDataset(dir) for dir in dirs]
    if len(ds) == 1:
        new_ids = [None]
    else:
        if len(par_names) == 1:
            new_ids = [f'{par_names[0]} : {v}' for v in par_values[0]]
        else:
            new_ids = [d.id for d in ds]
        plot_endpoint_params(ds, new_ids, mode='deb', save_to=parent_dir)
    # print(new_ids,[d.id for d in ds])
    # raise
    deb_dicts = flatten_list(
        [[deb_dict(d, id, new_id=new_id) for id in d.agent_ids]
         for d, new_id in zip(ds, new_ids)])
    plot_debs(deb_dicts=deb_dicts,
              save_to=parent_dir,
              save_as='deb_f.pdf',
              mode='f')
    plot_debs(deb_dicts=deb_dicts, save_to=parent_dir, save_as='deb.pdf')
    plot_debs(deb_dicts=deb_dicts,
              save_to=parent_dir,
              save_as='deb_minimal.pdf',
              mode='minimal')

    return df
コード例 #7
0
ファイル: batch_lib.py プロジェクト: bagjohn/larvaworld-1
def get_space_from_file(space_filepath=None,
                        params=None,
                        space_pd=None,
                        returned_params=None,
                        flag=None,
                        flag_range=[0, +np.inf],
                        ranges=None,
                        par4ranges=None,
                        additional_params=None,
                        additional_values=None):
    if space_pd is None:
        space_pd = pd.read_csv(space_filepath, index_col=0)
    if params is None:
        params = space_pd.columns.values.tolist()
    if returned_params is None:
        returned_params = params
    if ((ranges is not None) and (par4ranges is not None)):
        for p, r in zip(par4ranges, ranges):
            space_pd = space_pd[(space_pd[p] >= r[0])
                                & (space_pd[p] <= r[1])].copy(deep=True)
            print('Ranges found. Selecting combinations within range')
    if flag:
        r0, r1 = flag_range
        space_pd = space_pd[space_pd[flag].dropna() > r0].copy(deep=True)
        space_pd = space_pd[space_pd[flag].dropna() < r1].copy(deep=True)
        print(f'Using {flag} to select suitable parameter combinations')

    values = [space_pd[p].values.tolist() for p in params]
    values = [[float(b) for b in a] for a in values]
    if additional_params is not None and additional_values is not None:
        for p, vs in zip(additional_params, additional_values):
            Nspace = len(values[0])
            Nv = len(vs)
            values = [a * Nv for a in values] + flatten_list([[v] * Nspace
                                                              for v in vs])
            returned_params += [p]

    space = dict(zip(returned_params, values))
    return space
コード例 #8
0
    def __init__(self, unique_id, model, schedule, length=5, data=None):
        Larva.__init__(self, unique_id=unique_id, model=model)

        self.schedule = schedule
        self.data = data
        self.pars = self.data.columns.values
        self.Nticks = len(self.data.index.unique().values)
        self.t0 = self.data.index.unique().values[0]

        d = self.model.dataset
        self.spinepoint_xy_pars = [
            p for p in fun.flatten_list(d.points_xy) if p in self.pars
        ]
        self.Npoints = int(len(self.spinepoint_xy_pars) / 2)

        self.contour_xy_pars = [
            p for p in fun.flatten_list(d.contour_xy) if p in self.pars
        ]
        self.Ncontour = int(len(self.contour_xy_pars) / 2)

        self.centroid_xy_pars = [p for p in d.cent_xy if p in self.pars]

        Nsegs = self.model.draw_Nsegs
        if Nsegs is not None:
            if Nsegs == self.Npoints - 1:
                self.orientation_pars = [
                    p for p in nam.orient(d.segs) if p in self.pars
                ]
                self.Nors = len(self.orientation_pars)
                self.Nangles = 0
                if self.Nors != Nsegs:
                    raise ValueError(
                        f'Orientation values are not present for all body segments : {self.Nors} of {Nsegs}'
                    )
            elif Nsegs == 2:
                self.orientation_pars = [
                    p for p in ['front_orientation'] if p in self.pars
                ]
                self.Nors = len(self.orientation_pars)
                self.angle_pars = [p for p in ['bend'] if p in self.pars]
                self.Nangles = len(self.angle_pars)
                if self.Nors != 1 or self.Nangles != 1:
                    raise ValueError(
                        f'{self.Nors} orientation and {Nsegs} angle values are present and 1,1 are needed.'
                    )
            else:
                raise ValueError(
                    f'Defined number of segments {Nsegs} must be either 2 or {self.Npoints - 1}'
                )
        else:
            self.Nors, self.Nangles = 0, 0

        # self.angle_pars=[p for p in d.angles + ['bend'] if p in self.pars]
        # self.Nangles=len(self.angle_pars)
        #
        # self.orientation_pars=[p for p in nam.orient(d.segments) + ['front_orientation', 'rear_orientation'] if p in self.pars]
        # self.Nors = len(self.orientation_pars)

        self.chunk_ids = None
        self.trajectory = []
        self.color = deepcopy(self.default_color)
        self.sim_length = length
        self.radius = self.sim_length / 2

        if self.Npoints > 0:
            self.spinepoint_positions_ar = self.data[
                self.spinepoint_xy_pars].values
            self.spinepoint_positions_ar = self.spinepoint_positions_ar.reshape(
                [self.Nticks, self.Npoints, 2])
        else:
            self.spinepoint_positions_ar = np.ones(
                [self.Nticks, self.Npoints, 2]) * np.nan

        if self.Ncontour > 0:
            self.contourpoint_positions_ar = self.data[
                self.contour_xy_pars].values
            self.contourpoint_positions_ar = self.contourpoint_positions_ar.reshape(
                [self.Nticks, self.Ncontour, 2])
        else:
            self.contourpoint_positions_ar = np.ones(
                [self.Nticks, self.Ncontour, 2]) * np.nan

        if len(self.centroid_xy_pars) == 2:
            self.centroid_position_ar = self.data[self.centroid_xy_pars].values
        else:
            self.centroid_position_ar = np.ones([self.Nticks, 2]) * np.nan

        if len(self.model.pos_xy_pars) == 2:
            self.position_ar = self.data[self.model.pos_xy_pars].values
        else:
            self.position_ar = np.ones([self.Nticks, 2]) * np.nan

        if self.Nangles > 0:
            self.spineangles_ar = self.data[self.angle_pars].values
        else:
            self.spineangles_ar = np.ones([self.Nticks, self.Nangles]) * np.nan

        if self.Nors > 0:
            self.orientations_ar = self.data[self.orientation_pars].values
        else:
            self.orientations_ar = np.ones([self.Nticks, self.Nors]) * np.nan

        vp_behavior = [p for p in self.behavior_pars if p in self.pars]
        self.behavior_ar = np.zeros(
            [self.Nticks, len(self.behavior_pars)], dtype=bool)
        for i, p in enumerate(self.behavior_pars):
            if p in vp_behavior:
                self.behavior_ar[:, i] = np.array(
                    [not v for v in np.isnan(self.data[p].values).tolist()])

        if self.model.draw_Nsegs is not None:
            LarvaBody.__init__(self,
                               model,
                               pos=self.position_ar[0],
                               orientation=self.orientations_ar[0][0],
                               initial_length=self.sim_length / 1000,
                               length_std=0,
                               Nsegs=self.model.draw_Nsegs,
                               interval=0)

        self.pos = self.position_ar[0]
        self.id_box = self.init_id_box()
コード例 #9
0
def sim_analysis(d, experiment):
    if d is None:
        return
    s, e = d.step_data, d.endpoint_data
    if experiment in ['feed_patchy', 'feed_scatter', 'feed_grid']:
        # am = e['amount_eaten'].values
        # print(am)
        # cr,pr,fr=e['stride_dur_ratio'].values, e['pause_dur_ratio'].values, e['feed_dur_ratio'].values
        # print(cr+pr+fr)
        # cN, pN, fN = e['num_strides'].values, e['num_pauses'].values, e['num_feeds'].values
        # print(cN, pN, fN)
        # cum_sd, f_success=e['cum_scaled_dst'].values, e['feed_success_rate'].values
        # print(cum_sd, f_success)
        plot_endpoint_scatter(datasets=[d], labels=[d.id], par_shorts=['cum_sd', 'f_am', 'str_tr', 'fee_tr'])
        plot_endpoint_scatter(datasets=[d], labels=[d.id], par_shorts=['cum_sd', 'f_am'])

    elif experiment in ['growth', 'growth_2x']:
        starvation_hours = d.config['starvation_hours']
        f = d.config['deb_base_f']
        deb_model = deb_default(starvation_hours=starvation_hours, base_f=f)
        if experiment == 'growth_2x':
            roversVSsitters = True
            datasets = d.split_dataset(larva_id_prefixes=['Sitter', 'Rover'])
            labels = ['Sitters', 'Rovers']
        else:
            roversVSsitters = False
            datasets = [d]
            labels = [d.id]

        cc = {'datasets': datasets,
              'labels': labels,
              'save_to': d.plot_dir}

        plot_gut(**cc)
        plot_food_amount(**cc)
        plot_food_amount(filt_amount=True, **cc)
        # raise
        plot_pathlength(scaled=False, **cc)
        plot_endpoint_params(mode='deb', **cc)
        try:
            barplot(par_shorts=['f_am'], **cc)
        except:
            pass

        deb_dicts = [deb_dict(d, id, starvation_hours=starvation_hours) for id in d.agent_ids] + [deb_model]
        c = {'save_to': d.plot_dir,
             'roversVSsitters': roversVSsitters}

        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_hunger_sim_start.pdf', mode='hunger', sim_only=True,
                  start_at_sim_start=True, **c)

        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_f_sec.pdf', mode='f', sim_only=True,
                  time_unit='seconds', start_at_sim_start=True, **c)

        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_f.pdf', mode='f', sim_only=True, **c)
        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_hunger.pdf', mode='hunger', sim_only=True, **c)
        plot_debs(deb_dicts=deb_dicts, save_as='comparative_deb_complete.pdf', mode='complete', **c)
        # raise
        plot_debs(deb_dicts=deb_dicts, save_as='comparative_deb.pdf', **c)

        plot_debs(deb_dicts=deb_dicts, save_as='comparative_deb_minimal.pdf', mode='minimal', **c)

        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb.pdf', sim_only=True, **c)
        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_minimal.pdf', mode='minimal', sim_only=True, **c)
        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_complete.pdf', mode='complete', sim_only=True, **c)
        plot_debs(deb_dicts=[deb_dicts[-1]], save_as='default_deb.pdf', **c)

        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_f_sec.pdf', mode='f', sim_only=True,
                  time_unit='seconds', start_at_sim_start=True, **c)
        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_f.pdf', mode='f', sim_only=True, **c)

        plot_debs(deb_dicts=deb_dicts[:-1], save_as='deb_hunger_sim_start.pdf', mode='hunger', sim_only=True,
                  start_at_sim_start=True, **c)

    elif experiment == 'dispersion':
        target_dataset = load_reference_dataset()
        datasets = [d, target_dataset]
        labels = ['simulated', 'empirical']
        comparative_analysis(datasets=datasets, labels=labels, simVSexp=True, save_to=None)
        plot_marked_strides(dataset=d, agent_ids=d.agent_ids[:3], title=' ', slices=[[10, 50], [60, 100]])
        plot_marked_turns(dataset=d, agent_ids=d.agent_ids[:3], min_turn_angle=20)


    elif experiment in ['chemorbit', 'chemotax']:
        plot_timeplot('c_odor1', datasets=[d])
        plot_timeplot('dc_odor1', datasets=[d])
        plot_timeplot('A_olf', datasets=[d])
        plot_timeplot('A_tur', datasets=[d])
        plot_timeplot('Act_tur', datasets=[d])
        plot_distance_to_source(dataset=d, experiment=experiment)
        d.visualize(agent_ids=[d.agent_ids[0]], mode='image', image_mode='final',
                    contours=False, centroid=False, spinepoints=False,
                    random_colors=True, trajectories=True, trajectory_dt=0,
                    save_as='single_trajectory')
    elif experiment == 'odor_pref':
        ind = d.compute_preference_index(arena_diameter_in_mm=100)
        print(ind)
        return ind
    elif experiment == 'imitation':
        d.save_agent(pars=fun.flatten_list(d.points_xy) + fun.flatten_list(d.contour_xy), header=True)