def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera camera.start() # Initalize face detector detector = dlib.get_frontal_face_detector() # Loop while True: # Get image # Second parameter is upsample_num_times. img = camera.getImage() #TODO: get face detections using dlib detector dets = detector(img, 1) # Draw all face detections for det in dets: cv2.rectangle(img, (det.left(), det.top()), (det.right(), det.bottom()), color_green, 3) #show image cv2.imshow("Frame", img[..., ::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera focal_length = 640 camera.start() # Initalize face detector face_detector = FaceDetector() predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') # Loop while True: # Get image img = camera.getImage() # Get face detections dets = face_detector.detect(img) # Draw all face detections for det in dets: cv2.rectangle(img, (det.left(), det.top()), (det.right(), det.bottom()), color_green, 3) # Show image cv2.imshow("Frame", img[..., ::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera camera.start() # Initalize robot robot = Robot() # Start robot robot.start() # Initalize face detector face_detector = FaceDetector() predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') # The variable for counting loop cnt = 0 #Loop while True: # Get image img = camera.getImage() # Get face detections dets = face_detector.detect(img) if (len(dets) > 0): face_tracking = None distanceFromCenter_min = 1000 # Find a face near image center for face in dets: # Draw Rectangle cv2.rectangle(img, (face.left(), face.top()), (face.right(), face.bottom()), color_green, 3) face_x = (face.left() + face.right()) / 2 #TODO: write a distance between face and center, center is 0.5*width of image. distanceFromCenter = abs(face_x - camera.width / 2) # Find a face that has the smallest distance if distanceFromCenter < distanceFromCenter_min: distanceFromCenter_min = distanceFromCenter face_tracking = face # Estimate pose (success, rotation_vector, translation_vector, image_points) = face_detector.estimate_pose(img, face_tracking) # Draw pose img = face_detector.draw_pose(img, rotation_vector, translation_vector, image_points) # Show image cv2.imshow("Frame", img[..., ::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera focal_length = 640 camera.start() # Initalize face detector face_detector = FaceDetector() predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') # right direction threshold right_threshold = 0.3 left_threshold = -0.3 # Loop while True: # Get image img = camera.getImage() # Get face detections dets = face_detector.detect(img) # Draw all face detections for det in dets: cv2.rectangle(img, (det.left(), det.top()), (det.right(), det.bottom()), color_green, 3) # We only use 1 face to estimate pose if (len(dets) > 0): # Estimate pose (success, rotation_vector, translation_vector, image_points) = face_detector.estimate_pose(img, dets[0]) # Draw pose img = face_detector.draw_pose(img, rotation_vector, translation_vector, image_points) #TODO: find the yaw value from the rotation_vector print rotation_vector yaw = rotation_vector[2] print(yaw) #TODO: insert the condition for looking right if yaw > right_threshold: print('You are looking at right.') #TODO: insert the condition for looking left elif yaw < left_threshold: print('You are looking at left.') # Show image cv2.imshow("Frame", img[..., ::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera camera.start() # Initalize robot robot = Robot() # Start robot robot.start() # Initalize face detector detector = dlib.get_frontal_face_detector() # The variable for counting loop cnt = 0 # Loop while True: # Get image img = camera.getImage() # Get face detections dets = detector(img, 1) for det in dets: cv2.rectangle(img, (det.left(), det.top()), (det.right(), det.bottom()), color_green, 3) if (len(dets) > 0): tracked_face = dets[0] tracked_face_x = (tracked_face.left() + tracked_face.right()) / 2 tracked_face_y = (tracked_face.top() + tracked_face.bottom()) / 2 #TODO: convert 2d point to 3d point on the camera coordinates system #TODO: convert the 3d point on the camera point system to the robot coordinates system #TODO: move the robot so that it tracks the face # Show image cv2.imshow("Frame", img[..., ::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initialize camera camera = Camera() # Start camera camera.start() # Loop while True: #TODO: get image from camera, getImage returns an image img = # Use opencv to show image on window named "Frame" cv2.imshow("Frame", img[...,::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera focal_length = 640 camera.start() # Initalize face detector face_detector = FaceDetector() predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') # Loop while True: # Get image img = camera.getImage() # Get face detections dets = face_detector.detect(img) # Draw all face detections for det in dets: cv2.rectangle(img, (det.left(), det.top()), (det.right(), det.bottom()), color_green, 3) # We only use 1 face to estimate pose if (len(dets) > 0): #TODO: estimate pose of a detected face (success, rotation_vector, translation_vector, image_points) = face_detector.estimate_pose(img, dets[0]) # Draw pose img = face_detector.draw_pose(img, rotation_vector, translation_vector, image_points) print("rotation_vector") print rotation_vector print("translation_vector") print translation_vector #show image cv2.imshow("Frame", img[..., ::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): #We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() #Initalize camera camera = Camera() #start camera focal_length = 640 camera.start() robot = Robot() #start robot robot.start() #initalize face detector face_detector = FaceDetector() predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') #counter cnt = 1 #loop while True: #get image img = camera.getImage() #gets face detections dets = face_detector.detect(img) #draw all face detections for det in dets: cv2.rectangle(img, (det.left(), det.top()), (det.right(), det.bottom()), color_green, 3) #we only use 1 face to estimate pose if (len(dets) > 0): det0 = dets[0] #estimate pose (success, rotation_vector, translation_vector, image_points) = face_detector.estimate_pose(img, det0) #draw pose img = face_detector.draw_pose(img, rotation_vector, translation_vector, image_points) #converts 2d coordinates to 3d coordinates on camera axis (x, y, z) = camera.convert2d_3d((det0.left() + det0.right()) / 2, (det0.top() + det0.bottom()) / 2) print(x, y, z, 'on camera axis') #converts 3d coordinates on camera axis to 3d coordinates on robot axis (x, y, z) = camera.convert3d_3d(x, y, z) print(x, y, z, 'on robot axis') #move robot robot.lookatpoint(x, y, z, 4) cv2.imshow("Frame", img[..., ::-1]) key = cv2.waitKey(1) if key > 0: break
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera camera.start() # Initalize ball detector ball_detector = BallDetector() #loop while True: # Get image img = camera.getImage() # Gets image with ball detected, (img, center) = ball_detector.detect(img, 640) # Show image cv2.imshow("Frame", img[..., ::-1]) # Print the center print(center) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
#!/usr/bin/env python import cv2 import sys from example_2_ball_detector import BallDetector sys.path.append('..') from lib.camera_v2 import Camera from lib.robot import Robot from lib.ros_environment import ROSEnvironment # Initalize camera camera = Camera() # Initalize robot robot = Robot() def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Start camera camera.start() # Start robot robot.start() # Initalize ball detector ball_detector = BallDetector() # Loop while True: # Get image from camera img = camera.getImage() # Get image with ball detected, (img, center) = ball_detector.detect(img, 640)
def main(): ROSEnvironment() camera = Camera() camera.start() robot = Robot() robot.start() # Get image from camera cam_image = camera.getImage() # Get width and height of image input_image = cam_image width = input_image.shape[1] height = input_image.shape[0] # Check deep neural network with weight and configure file net = cv2.dnn.readNet(weight_path, cfg_path) #creates a "bob" that is the input image after mean subtraction, normalizing, channel swapping #0.00392 is the scale factor #(416,416) is the size of the output image #(0,0,0) are the mean values that will be subtracted for each channel RGB blob = cv2.dnn.blobFromImage(input_image, 0.00392, (416, 416), (0, 0, 0), True, crop=False) #Inputs blob into the neural network net.setInput(blob) #gets the output layers "yolo_82', 'yolo_94', 'yolo_106" #output layer contains the detection/prediction information layer_names = net.getLayerNames() #getUnconnectedOutLayers() returns indices of unconnected layers #layer_names[i[0] - 1] gets the name of the layers of the indices #net.getUnconnectedOutLayers() returns [[200], [227], [254]] output_layers = [ layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers() ] #Runs forward pass to compute output of layer #returns predictions/detections at 32, 16 and 8 scale preds = net.forward(output_layers) #Initialize list that contains class id, confidence values, bounding boxes class_ids = [] confidence_values = [] bounding_boxes = [] # TODO: initialize confidence threshold and threshold for non maximal suppresion conf_threshold = 0.5 nms_threshold = 0.4 #for each scale, we go through the detections for pred in preds: for detection in pred: #Use the max score as confidence scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] #Check if confidence is greather than threshold if confidence > conf_threshold: #Compute x,y, widht, height, class id, confidence value center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = center_x - w / 2 y = center_y - h / 2 class_ids.append(class_id) confidence_values.append(float(confidence)) bounding_boxes.append([x, y, w, h]) # check your threshold for non maximal suppression indices = cv2.dnn.NMSBoxes(bounding_boxes, confidence_values, conf_threshold, nms_threshold) #draw results #tracked_object flag for if object is already tracked tracked_object = 0 for i in indices: i = i[0] box = bounding_boxes[i] x = box[0] y = box[1] w = box[2] h = box[3] center_x = x + w / 2.0 center_y = y + h / 2.0 classid = class_ids[i] class_name = str(classes[classid]) print(class_name) conf_value = confidence_values[i] draw_boundingbox(input_image, classid, conf_value, round(x), round(y), round(x + w), round(y + h)) #show image cv2.imshow("Object Detection Window", input_image[..., ::-1]) key = cv2.waitKey(0) cv2.imwrite("detected_object.jpg", input_image)
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera camera.start() # Initalize face detector face_detector = FaceDetector() predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') # Initalize robot robot = Robot() # Start robot robot.start() robot.move(0, 0.5) # Loop while True: # Get image img = camera.getImage() # Get face detections dets = face_detector.detect(img) # Draw all face detections for det in dets: cv2.rectangle(img, (det.left(), det.top()), (det.right(), det.bottom()), color_green, 3) # We only use 1 face to estimate pose if (len(dets) > 0): # Estimate pose (success, rotation_vector, translation_vector, image_points) = face_detector.estimate_pose(img, dets[0]) # Draw pose img = face_detector.draw_pose(img, rotation_vector, translation_vector, image_points) #TODO: find a yaw value from rotation_vector print rotation_vector yaw = rotation_vector[2] #TODO: remember current position print("Pan angle is ", robot.getPosition()[0], "Tilt angle is", robot.getPosition()[1]) current_pan = robot.getPosition()[0] current_tilt = robot.getPosition()[1] #TODO: insert the condition for looking at right if yaw > 0.3: print('You are looking at right.') #TODO: add motion for looking at right robot.move(0.5, 0.5) #TODO: insert the condition for looking at left elif yaw < -0.3: print('You are looking at left.') #TODO: add motion for looking at left robot.move(-0.5, 0.5) time.sleep(3) #TODO: Looking at the position that is stored. robot.move(current_pan, current_tilt) time.sleep(5) # Show image cv2.imshow("Frame", img[..., ::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): # We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() # Initalize camera camera = Camera() # Start camera camera.start() # Initalize face detector face_detector = FaceDetector() predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') # Initalize robot robot = Robot() # Start robot robot.start() robot.move(0,0.3) # the time when motion runs motion_start_time = None # Loop while True: # Get image img = camera.getImage() # Get face detections dets = face_detector.detect(img) # Draw all face detections for det in dets: cv2.rectangle(img,(det.left(), det.top()), (det.right(), det.bottom()), color_green, 3) # We only use 1 face to estimate pose if(len(dets)>0): # Estimate pose (success, rotation_vector, translation_vector, image_points) = face_detector.estimate_pose(img, dets[0]) # Draw pose img = face_detector.draw_pose(img, rotation_vector, translation_vector, image_points) #The yaw value is the 2nd value in the rotation_vector print rotation_vector yaw = rotation_vector[2] #prints the current position print ("Pan angle is ",robot.getPosition()[0], "Tilt angle is", robot.getPosition()[1]) #condition when the user is looking right if (yaw > 0.3 and motion_start_time == None): print ('You are looking at right.') #TODO: store the current position in current_pan and current_tilt current_pos = robot.getPosition() current_pan = current_tilt = #TODO: add motion for looking right robot.move(,) motion_start_time = current_time() #condition when the user is looking left elif (yaw < -0.3 and motion_start_time == None): print ('You are looking at left.') #TODO: store the current position in current_pan and current_tilt current_pos = robot.getPosition() current_pan = current_tilt = #TODO: add motion for looking at left robot.move(,) motion_start_time = current_time() if(motion_start_time !=None): print current_time()- motion_start_time # After the motion runs, check if 3 seconds have passed. if(motion_start_time != None and current_time()-motion_start_time > 3 ): #TODO: move the robot so that it returns to the stored current position robot.move(, ) motion_start_time = None sleep(0.05) # Show image cv2.imshow("Frame", img[...,::-1]) # Close if key is pressed key = cv2.waitKey(1) if key > 0: break
def main(): faceInCenter_count = 0 current_pan = 0 current_tilt = 0 #We need to initalize ROS environment for Robot and camera to connect/communicate ROSEnvironment() #Initalize camera camera = Camera() #start camera camera.start() #Initalize robot robot = Robot() #start robot robot.start() #initalize face detector face_detector = FaceDetector() predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') #face detection result dets = None # current tracking state Tracking = False # the time when motion for looking left/right runs motion_start_time = None cnt = 0 #loop while True: #get image img = camera.getImage() if frame_skip(img): continue #gets detect face dets = face_detector.detect(img) #If the number of face detected is greater than 0 if len(dets)>0: #We select the first face detected tracked_face = dets[0] #Get the x, y position tracked_face_X = (tracked_face.left()+tracked_face.right())/2 tracked_face_y = (tracked_face.top()+tracked_face.bottom())/2 # Estimate head pose (success, rotation_vector, translation_vector, image_points) = face_detector.estimate_pose(img, tracked_face) # Draw bounding box cv2.rectangle(img,(tracked_face.left(), tracked_face.top()), (tracked_face.right(), tracked_face.bottom()), color_green, 3) # Draw head pose img = face_detector.draw_pose(img, rotation_vector, translation_vector, image_points) #Check if head is in the center, returns how many times the head was in the center faceInCenter_count =faceInCenter(camera, tracked_face_X, tracked_face_y, faceInCenter_count) print faceInCenter_count print ("{} in the center for {} times".format("Face as been", (faceInCenter_count)) ) #We track when the head is in the center for a certain period of time and there is not head motion activated if(faceInCenter_count<5 and motion_start_time == None): Tracking = True else: Tracking = False #Start tracking if Tracking: print("Tracking the Person") #TODO: converts 2d coordinates to 3d coordinates on camera axis (x,y,z) = camera.convert2d_3d(tracked_face_X, tracked_face_y) #TODO: converts 3d coordinates on camera axis to 3d coordinates on robot axis (x,y,z) = camera.convert3d_3d(x,y,z) #TODO: move robot to track your face robot.lookatpoint(x,y,z, 1) #When tracking is turned off, estimate the head pose and perform head motion if conditions meet elif Tracking is False: print "Stopped Tracking, Starting Head Pose Estimation" # yaw is angle of face on z-axis yaw = rotation_vector[2] #Condition for user looking towards the right if (yaw > 0.3 and motion_start_time == None): print ('You are looking towards the right.') #TODO: Remember the current position current_position = robot.getPosition() current_pan = current_position[0] current_tilt = current_position[1] print "Starting head motion to look right" #TODO: add motion for looking right robot.move(0.8,0.5) motion_start_time = current_time() #Condition for user looking towards the left elif (yaw < -0.3 and motion_start_time == None): print ('You are looking towards the left.') #TODO: Remember the current position current_position = robot.getPosition() current_pan = current_position[0] current_tilt = current_position[1] print "Starting head motion to look left" #TODO: add motion for looking left robot.move(-0.8,0.5) motion_start_time = current_time() #When head motion is activated we start the counter if(motion_start_time != None): print ("{} and its been {} seconds".format("Look motion activated ", (current_time()-motion_start_time)) ) #After 3 seconds, we have to return to the current position if(motion_start_time != None and ((current_time()-motion_start_time) > 3) ): #Looking at the position that is stored. print "Robot is going back " #TODO: make the robot move to the stored current position robot.move(current_pan, current_tilt) motion_start_time = None #Tracking = True #Start tracking again if (cnt>10 and motion_start_time == None): Tracking = True cnt = cnt+1 sleep(0.08) #show image cv2.imshow("Frame", img[...,::-1]) #Close if key is pressed key = cv2.waitKey(1) if key > 0: break