def predict2csv(self, code, startd, endd, csvpath): tfl = TfLearning(meigaras=[code], restore_first=False) (restored, ver, accuracy) = tfl.restore(code) if restored == False: return False (dates, ximage) = tfl.get_meigara_xs(code, startd, endd) result = tfl.predict(ximage) data = [] for i in range(len(dates)): if dates[i] <= ver: continue row = [code, dates[i], ver, accuracy] row.extend(result[i].tolist()) data.append(row) cf.arr2csv(csvpath, data)
def do_test(startd, endd, meigaras=[]): interval = 20 if len(meigaras) == 0: meigaras = kf.get_meigaras() f.log("Start making reports") report = [] for code in meigaras: f.log("Processing meigara:%s" % (code)) kl = KabukaLines(code, startd, endd) lt = LineTrader(kl) kabuka = kl.get_kabuka() if len(kabuka) == 7: (indexes, dates, open, high, low, close, volume) = kabuka else: continue tmp_endd = dates[-1] i = 60 old_from_date = "" while i < len(dates)-interval: if lt.judge_trade_goodness(i) == False: i += interval continue tmp_startd = dates[i] tmp_next_startd = dates[i+interval] (trade_mode_str, interest, from_date, to_date, spent, start_price, end_price, endi) \ = lt.test(tmp_startd, tmp_endd, tmp_next_startd) if old_from_date != from_date: if trade_mode_str != "": report.append([code, trade_mode_str, interest, from_date, to_date, spent, start_price, end_price]) old_from_date = from_date if endi > i: i = endi else: i += interval f.arr2csv("%s/report.csv" % (TMP_DIR), report) f.log("Finished making reports:%s/report.csv" % (TMP_DIR))
def save(self): path = "%s/%s" % (CSV_DIR, self.cluster_centers_csv) labels = np.matrix(self.km.predict(self.km.cluster_centers_)).T labels = np.array(labels) centers = self.km.cluster_centers_ f.arr2csv(path, np.c_[labels, centers], "w")
def save(self): path = "%s/%s" % (CSV_DIR, self.cluster_centers_csv) coef = self.sgdcls.coef_ intercept = self.sgdcls.intercept_ f.arr2csv(self.coef_csv, coef, "w") f.arr2csv(self.intercept_csv, intercept, "w")
def save(km, cluster_centers_csv): path = "%s/%s" % (CSV_DIR, cluster_centers_csv) f.arr2csv(path, km.cluster_centers_, "w")