コード例 #1
0
 def run(self, mult3=False):
     for aln_id, aln, t, a in self.alignment_transcript_annotation_iterator(
     ):
         # do not include noncoding transcripts or lift-overs that contain less than short_cds_size
         if comp_ann_lib.short_cds(t) or comp_ann_lib.short_cds(a):
             self.classify_dict[aln_id] = 0
             continue
         for start, stop, size in comp_ann_lib.deletion_iterator(
                 t, aln, mult3):
             if start >= t.thick_start and stop < t.thick_stop:
                 bed_rec = seq_lib.chromosome_region_to_bed(
                     t, start, stop, self.rgb, self.column)
                 self.details_dict[aln_id].append(bed_rec)
         self.classify_dict[aln_id] = len(self.details_dict[aln_id])
     self.dump_results_to_disk()
コード例 #2
0
 def run(self, equality_test=lambda target, query: target != query):
     self.get_fasta()
     for aln_id, aln, t, a in self.alignment_transcript_annotation_iterator(
     ):
         # do not include noncoding transcripts or lift-overs that contain less than short_cds_size
         if comp_ann_lib.short_cds(t) or comp_ann_lib.short_cds(a):
             self.classify_dict[aln_id] = 0
             continue
         for i, target_codon, query_codon in comp_ann_lib.codon_pair_iterator(
                 a, t, aln, self.seq_dict, self.ref_seq_dict):
             target_aa = seq_lib.codon_to_amino_acid(target_codon)
             query_aa = seq_lib.codon_to_amino_acid(query_codon)
             if target_codon != query_codon and equality_test(
                     target_aa, query_aa) is True:
                 bed_rec = seq_lib.cds_coordinate_to_bed(
                     t, i, i + 3, self.rgb, self.column)
                 self.details_dict[aln_id].append(bed_rec)
         self.classify_dict[aln_id] = len(self.details_dict[aln_id])
     self.dump_results_to_disk()
コード例 #3
0
 def run(self):
     for aln_id, aln, t, a in self.alignment_transcript_annotation_iterator(
     ):
         # do not include noncoding transcripts or lift-overs that contain less than short_cds_size
         if comp_ann_lib.short_cds(t) or comp_ann_lib.short_cds(a):
             self.classify_dict[aln_id] = 0
             continue
         frame_shifts = list(comp_ann_lib.frame_shift_iterator(a, t, aln))
         if len(frame_shifts) == 0:
             self.classify_dict[aln_id] = 0
             continue
         windowed_stops, windowed_starts = self.window_starts_stops(
             t, frame_shifts)
         for start, stop in itertools.izip(windowed_starts, windowed_stops):
             bed_rec = seq_lib.chromosome_coordinate_to_bed(
                 t, start, stop, self.rgb, self.column)
             self.details_dict[aln_id].append(bed_rec)
         self.classify_dict[aln_id] = len(self.details_dict[aln_id])
     self.dump_results_to_disk()
コード例 #4
0
 def run(self):
     for ens_id, a in self.annotation_iterator():
         if comp_ann_lib.short_cds(a) is True and a.cds_size != 0:
             bed_rec = seq_lib.cds_coordinate_to_bed(
                 a, 0, a.cds_size, self.rgb, self.column)
             self.details_dict[ens_id].append(bed_rec)
             self.classify_dict[ens_id] = 1
         else:
             self.classify_dict[ens_id] = 0
     self.dump_results_to_disk()
コード例 #5
0
 def run(self):
     for aln_id, aln, t, a in self.alignment_transcript_annotation_iterator(
     ):
         # do not include noncoding transcripts or lift-overs that contain less than short_cds_size
         if comp_ann_lib.short_cds(t) or comp_ann_lib.short_cds(a):
             self.classify_dict[aln_id] = 0
             continue
         cds_positions = [
             t.chromosome_coordinate_to_cds(
                 aln.query_coordinate_to_target(
                     a.cds_coordinate_to_transcript(i))) for i in xrange(3)
         ]
         if None in cds_positions:
             self.details_dict[aln_id].append(
                 seq_lib.cds_coordinate_to_bed(t, 0, 3, self.rgb,
                                               self.column))
             self.classify_dict[aln_id] = 1
         else:
             self.classify_dict[aln_id] = 0
     self.dump_results_to_disk()
コード例 #6
0
 def run(self):
     self.get_fasta()
     for ens_id, a in self.annotation_iterator():
         # do not include noncoding transcripts or lift-overs that contain less than short_cds_size
         if comp_ann_lib.short_cds(a):
             self.classify_dict[ens_id] = 0
         elif a.get_cds(self.ref_seq_dict)[:3] != "ATG":
             bed_rec = seq_lib.cds_coordinate_to_bed(
                 a, 0, 3, self.rgb, self.column)
             self.details_dict[ens_id].append(bed_rec)
             self.classify_dict[ens_id] = 1
         else:
             self.classify_dict[ens_id] = 0
     self.dump_results_to_disk()
コード例 #7
0
 def run(self):
     for ens_id, a in self.annotation_iterator():
         # do not include noncoding transcripts or lift-overs that contain less than short_cds_size
         if comp_ann_lib.short_cds(a):
             self.classify_dict[ens_id] = 0
             continue
         if a.cds_size % 3 != 0:
             bed_rec = seq_lib.chromosome_coordinate_to_bed(
                 a, a.thick_start, a.thick_stop, self.rgb, self.column)
             self.details_dict[ens_id].append(bed_rec)
             self.classify_dict[ens_id] = 1
         else:
             self.classify_dict[ens_id] = 0
     self.dump_results_to_disk()
コード例 #8
0
 def run(self):
     for ens_id, a in self.annotation_iterator():
         # do not include noncoding transcripts or lift-overs that contain less than short_cds_size
         if comp_ann_lib.short_cds(a):
             self.classify_dict[ens_id] = 0
             continue
         # remove all -1 frames because those are UTR exons
         a_frames = [x for x in a.exon_frames if x != -1]
         if a.strand is True and a_frames[
                 0] != 0 or a.strand is False and a_frames[-1] != 0:
             self.classify_dict[ens_id] = 1
             self.details_dict[ens_id].append(
                 seq_lib.cds_coordinate_to_bed(a, 0, 3, self.rgb,
                                               self.column))
         else:
             self.classify_dict[ens_id] = 0
     self.dump_results_to_disk()