コード例 #1
0
ファイル: ledafits.py プロジェクト: telegraphic/interfits
    def phase_to_src(self, src='ZEN', generate_uvw=True):
        """ Apply phase corrections to phase to source.

        Generates new UVW coordinates, then applies geometric delay (W component)
        to phase flux data to the new phase center.

        Parameters
        ----------
        src (str): Source to phase to. Sources are three capital letters:
            ZEN: Zenith (RA will be computed from timestamps)
            CYG: Cygnus A
            CAS: Cassiopeia A
            TAU: Taurus A
            VIR: Virgo A
        generate_uvw (bool): Skip regeneration of UVW coords?

        """
        self.pp.h1("Phasing flux data to %s" % src)

        current_tgs = self.d_uv_data["WW"]
        if generate_uvw is True:
            self.generateUVW(src, update_src=True)
        freqs = self.formatFreqs()
        w = 2 * np.pi * freqs  # Angular freq
        # Note WW *is* the geometric delay tg
        new_tgs = self.d_uv_data["WW"]

        try:
            assert self.d_uv_data["FLUX"].dtype == 'float32'
        except AssertionError:
            raise RuntimeError("Unexpected data type for FLUX: %s" % str(self.d_uv_data["FLUX"].dtype))
        flux = self.d_uv_data["FLUX"].view('complex64')

        bls = set(self.d_uv_data["BASELINE"])
        if not 257 in bls:
            bls, ant_arr = coords.generateBaselineIds(self.n_ant, autocorrs=False)
        else:
            bls, ant_arr = coords.generateBaselineIds(self.n_ant, autocorrs=True)
        n_int = len(flux) / len(bls)

        for nn in range(n_int):
            for ii in range(len(bls)):
                # Compute phases for X and Y pol on antennas A and B
                tg = new_tgs[nn * len(bls) + ii] - current_tgs[nn * len(bls) + ii]
                #if ant1 < ant2:
                #    tg *= -1    # Compensate for geometry
                p = np.exp(-1j * w * tg)  # Needs to be -ve as compensating delay
                phase_corrs = np.column_stack((p, p, p, p)).flatten()
                flux[nn * len(bls) + ii] = flux[nn * len(bls) + ii] * phase_corrs

            # Now we have applied geometric delays, we need to
            # convert from viewing as complex to viewing as floats
            assert flux.dtype == 'complex64'
            self.d_uv_data["FLUX"] = flux.view('float32')
コード例 #2
0
ファイル: ledafits.py プロジェクト: telegraphic/interfits
    def apply_cable_delays(self, debug=True):
        """ Apply antenna cable delays

        Each cable introduces a phase shift of
            phi = 2 pi f t
        Visibility is VpVq*, so we need to apply
            exp(-i  (phip - phiq))
        to compensate for cable delay
        """

        self.pp.h1("Applying cable delays")
        #t0 = time.time()
        # Load antenna Electrical Lengths
        sol = ledafits_config.SPEED_OF_LIGHT
        try:
            els = self.z_elength["EL"]
        except:
            raise RuntimeError("No cable delay data for telescope '%s'" % self.telescope)
        els = np.array(els)
        tdelts = els / sol

        if debug:
            print "X-POL (ns)  \tY-POL (ns)"
            for line in tdelts:
                print "%2.2f   \t%2.2f" % (line[0] * 1e9, line[1] * 1e9)

        # Generate frequency array from metadata
        freqs = self.formatFreqs()
        # Compute phase delay for each antenna pair
        try:
            assert self.d_uv_data["FLUX"].dtype == 'float32'
        except AssertionError:
            raise RuntimeError("Unexpected data type for FLUX: %s" % str(self.d_uv_data["FLUX"].dtype))

        # Convert the data to complex values
        flux = self.d_uv_data["FLUX"].view('complex64')

        # Pre-compute the phasing information
        bls, ant_arr = coords.generateBaselineIds(self.n_ant)
        w = 2 * np.pi * freqs  # Angular freq
        delay_corrs = np.zeros((4, len(bls), len(freqs)), dtype=flux.dtype)
        for ii in range(len(bls)):
            ant1, ant2 = ant_arr[ii]
            bl = bls[ii]
            td1, td2 = tdelts[ant1 - 1, :], tdelts[ant2 - 1, :]

            # Compute phases for X and Y pol on antennas A and B
            pxa, pya, pxb, pyb = w * td1[0], w * td1[1], w * td2[0], w * td2[1]

            # Corrections require negative sign (otherwise reapplying delays)
            delay_corrs[0, ii, :] = np.exp(1j * (pxa - pxb))  # XX
            delay_corrs[1, ii, :] = np.exp(1j * (pya - pyb))  # YY
            delay_corrs[2, ii, :] = np.exp(1j * (pxa - pyb))  # XY
            delay_corrs[3, ii, :] = np.exp(1j * (pya - pxb))  # YX

        n_int = len(flux) / len(bls)
        for nn in range(n_int):
            for ii in range(len(bls)):
                e_xx = delay_corrs[0, ii, :].flatten()
                e_yy = delay_corrs[1, ii, :].flatten()
                e_xy = delay_corrs[2, ii, :].flatten()
                e_yx = delay_corrs[3, ii, :].flatten()

                phase_corrs = np.column_stack((e_xx, e_yy, e_xy, e_yx)).flatten()
                flux[nn * len(bls) + ii] = flux[nn * len(bls) + ii] * phase_corrs

        assert flux.dtype == 'complex64'
        self.d_uv_data["FLUX"] = flux.view('float32')
コード例 #3
0
ファイル: ledafits.py プロジェクト: telegraphic/interfits
    def generateUVW(self, src='ZEN', update_src=True, conjugate=False, use_stored=False):
        """ Generate UVW coordinates based on timestamps and array geometry

        Updates UVW coordinates to phase to a given source. Uses pyEphem observer
        along with methods is lib.uvw for computations

        src (str): Source to phase to. Sources are three capital letters:
            ZEN: Zenith (RA will be computed from timestamps)
            CYG: Cygnus A
            CAS: Cassiopeia A
            TAU: Taurus A
            VIR: Virgo A

        use_stored (bool): If True, uses stored UVW coordinates (does not recompute).
                           this is faster than recomputing.
        update_src (bool): Default True, update the SOURCE table.
        conjugate (bool): Conjuagte UVW coordinates? Do this if things are flipped in map.
        """

        self.pp.h1("Generating UVW coordinates")
        ra_deg, dec_deg, lst_deg, ha_deg = self._compute_lst_ha(src)
        H = np.deg2rad(ha_deg)
        d = np.deg2rad(dec_deg)

        self.pp.pp("LST:        %2.3f deg" % lst_deg)
        self.pp.pp("Source RA:  %2.3f deg" % ra_deg)
        self.pp.pp("Source DEC: %2.3f deg" % dec_deg)
        self.pp.pp("HA:         %2.3f deg" % np.rad2deg(H))

        try:
            assert H < 2 * np.pi and d < 2 * np.pi
        except AssertionError:
            raise ValueError("HA and DEC are too large (may not be in radians).")

        # Recreate list of baselines
        self.pp.h2("Computing UVW coordinates for %s" % src)
        xyz = self.d_array_geometry['STABXYZ']
        if 257 in set(self.d_uv_data["BASELINE"]):
            bl_ids, ant_arr = coords.generateBaselineIds(self.n_ant)
            bl_vecs = coords.computeBaselineVectors(xyz)
        else:
            bl_ids, ant_arr = coords.generateBaselineIds(self.n_ant, autocorrs=False)
            bl_vecs = coords.computeBaselineVectors(xyz, autocorrs=False)

        n_iters = int(len(self.d_uv_data["BASELINE"]) / len(bl_ids))

        self.pp.h2("Generating timestamps")
        dd, tt = [], []
        for ii in range(n_iters):
            jd, jt = coords.convertToJulianTuple(self.date_obs)
            tdelta = self.t_int * ii / 86400.0  # In days
            jds = [jd for jj in range(len(ant_arr))]
            jts = [jt + tdelta for jj in range(len(ant_arr))]
            dd.append(jds)
            tt.append(jts)

        self.d_uv_data["DATE"] = np.array(dd, dtype='float64').ravel()
        self.d_uv_data["TIME"] = np.array(tt, dtype='float64').ravel()

        if use_stored:
            self.pp.h2("Loading stored values")
            self.loadUVW()
        else:

            uvw = coords.computeUVW(bl_vecs, H, d, conjugate=conjugate)

            # Fill with data
            # TODO: update this so that it can lock to zenith or phase to src
            uu, vv, ww = [], [], []

            for ii in range(n_iters):
                uu.append(uvw[:, 0])
                vv.append(uvw[:, 1])
                ww.append(uvw[:, 2])

            self.d_uv_data["UU"] = np.array(uu).ravel()
            self.d_uv_data["VV"] = np.array(vv).ravel()
            self.d_uv_data["WW"] = np.array(ww).ravel()

        if update_src:
            self.pp.h2("Updating SOURCE table")
            self.d_source["SOURCE"] = self.s2arr(src)
            self.d_source["RAEPO"] = self.s2arr(ra_deg)
            self.d_source["DECEPO"] = self.s2arr(dec_deg)
            self.source = src
コード例 #4
0
ファイル: ledafits.py プロジェクト: telegraphic/interfits
    def _vis_matrix_to_flux(self, vis, remap=False):
        """Convert a visibility matrix to FITS-IDI flux standard

        Notes
        -----
        Visibility matrix should have shape:
            (n_int, ant1, ant2, chans, pola, polb)
        FITS-IDI is a flattened row on a per-baseline basis:
            (xx, yy, xy, yx)
        where each xx is (re_chan0, im_chan0, ... re_chanX, im_chanX).

        We only read one triangle of the visibility matrix, with ant1 >= ant2
        """

        # h2("Generating baseline IDs")
        n_int = vis.shape[0]
        n_ant = vis.shape[1]
        n_chans = vis.shape[3]
        n_stk = 4
        n_bls = n_ant * (n_ant - 1) / 2 + n_ant

        bls, ant_arr = coords.generateBaselineIds(n_ant)
        ant_arr0 = np.array(ant_arr) - 1  # Zero indexed
        flux = np.zeros([n_bls * n_int, n_chans * n_stk * 2], dtype='float32')

        try:
            assert vis.dtype == 'complex64'
        except AssertionError:
            raise RuntimeError('Vis data is not complex64, but is instead %s' % vis.dtype)

        for int_num in xrange(n_int):
            idx = int_num * n_bls
            vis_int = vis[int_num, ...]
            for ii in xrange(n_bls):
                ant1, ant2 = ant_arr0[ii]
                vv = vis_int[ant1, ant2, ...]
                xx = vv[:, 0, 0]
                yy = vv[:, 1, 1]
                xy = vv[:, 0, 1]
                yx = vv[:, 1, 0]
                flux[idx + ii] = np.column_stack((xx, yy, xy, yx)).flatten().view('float32')

        if remap:
            self.pp.h2("Remapping antennas")
            mapping = {
                "255A": "238A",
                "255B": "240B",
                "242B": "253B",
                "240B": "252B",
                "252A": "254A",
                "252B": "244B",
                "256B": "248B",
                "248B": "256B",
                "245B": "255B",
                "253B": "245B",
                "253A": "255A",
                "244B": "254B",
                "238A": "252A",
                "250B": "242B",
                "250A": "253A",
                "254B": "250B",
                "254A": "250A"
            }
            map_keys = set(mapping.keys())
            bls_all, ants = coords.generateBaselineIds(self.n_ant, autocorrs=True)

            for int_num in xrange(n_int):
                idx = int_num * n_bls
                vis_int = vis[int_num, ...]

                # For every antenna remapping
                for k in map_keys:
                    ant_old, pol_id = int(k[:3]), 0 if k[3] == 'B' else 1
                    ant_new = int(mapping[k][:3])

                    # Find affected baselines
                    bls_old = self.search_baselines(ant_old)
                    bls_new = self.search_baselines(ant_new)

                    # For every baseline affected
                    for bb in range(len(bls_old)):
                        # Find new antenna pair indexes
                        bl_old, bl_new = bls_old[bb], bls_new[bb]
                        bl_idx = bls_all.index(bl_old)

                        if bl_new >= 65536:
                            a1, a2 = (bl_new - 65536) / 2048 - 1, (bl_new - 65536) % 2048 - 1
                        else:
                            a1, a2 = bl_new / 256 - 1, bl_new % 256 - 1

                        # Grab all the visibility data for this baseline
                        xx = vis_int[a1, a2, :, 0, 0]
                        xy = vis_int[a1, a2, :, 0, 1]
                        yx = vis_int[a1, a2, :, 1, 0]
                        yy = vis_int[a1, a2, :, 1, 1]

                        # Now we need to figure out what we need to update
                        # Are we updating pol A or pol B? Ant1 or Ant2?
                        data = flux[idx + bl_idx]
                        sp = len(xx) * 2
                        if ant_new == a1:
                            if pol_id == 0:
                                data[0:sp] = xx.flatten().view('float32')
                                data[2 * sp:3 * sp] = xy.flatten().view('float32')
                            else:
                                data[1 * sp:2 * sp] = yy.flatten().view('float32')
                                data[3 * sp:] = yx.flatten().view('float32')
                        else:
                            if pol_id == 0:
                                data[0:sp] = xx.flatten().view('float32')
                                data[2 * sp:3 * sp] = yx.flatten().view('float32')
                            else:
                                data[1 * sp:2 * sp] = yy.flatten().view('float32')
                                data[3 * sp:] = xy.flatten().view('float32')

                        # Write this back into the right baseline
                        flux[idx + bl_idx] = data
        return flux
コード例 #5
0
ファイル: ledafits.py プロジェクト: telegraphic/interfits
    def readDada(self, n_int=None, xmlbase=None, header_dict=None, data_arr=None, inspectOnly=False):
        """ Read a LEDA DADA file.

            header_dict (dict): psrdada header. Defaults to None. If a dict is passed, then instead of
                                loading data from file, data will be loaded from data_arr
            data_arr (np.ndarray): data array. This should be a preformatted FLUX data array.
            """

        self.pp.h1("Loading DADA data")
        if type(header_dict) is dict:
            self.pp.h2("Loading from shared memory")
            d = HeaderDataUnit(header_dict, data_arr)
            flux = data_arr
            self.pp.h2("Generating baseline IDs")
            bls, ant_arr = coords.generateBaselineIds(d.n_ant)
            bl_lower = []
            while len(bl_lower) < len(flux):
                bl_lower += bls
        else:
            self.pp.h2("Loading visibility data")
            d = dada.DadaReader(self.filename, n_int, inspectOnly=inspectOnly)
            vis = d.data
            self.dada_header = d.header
            try:
                n_ant = d.n_ant
                n_int = d.n_int
                self.n_ant = n_ant
            except ValueError:
                raise RuntimeError("Cannot load NCHAN / NPOL / NSTATION from dada file")

        if not header_dict:
            self.pp.h2("Converting visibilities to FLUX columns")
            do_remap = False
            if d.header["TELESCOPE"] in ('LEDA', 'LWAOVRO', 'LWA-OVRO', 'LEDAOVRO', 'LEDA512', 'LEDA-OVRO'):
                do_remap = False
            flux = self._vis_matrix_to_flux(vis, remap=do_remap)
            bls, ant_arr = coords.generateBaselineIds(n_ant)
            bl_lower = []
            for dd in range(vis.shape[0] / n_int):
                bl_lower += bls

        self.d_uv_data["BASELINE"] = np.array([bl_lower for ii in range(n_int)]).flatten()
        self.d_uv_data["FLUX"] = flux

        self.pp.h1("Generating FITS-IDI schema from XML")
        if xmlbase is None:
            dirname, filename = os.path.split(os.path.abspath(__file__))
            xmlbase = os.path.join(dirname, 'config/config.xml')
        self.xmlData = etree.parse(xmlbase)

        hdu_primary = make_primary(config=self.xmlData)
        tbl_array_geometry = make_array_geometry(config=self.xmlData, num_rows=n_ant)
        tbl_antenna = make_antenna(config=self.xmlData, num_rows=n_ant)
        tbl_frequency = make_frequency(config=self.xmlData, num_rows=1)
        tbl_source = make_source(config=self.xmlData, num_rows=1)

        #h1('Creating HDU list')
        hdulist = pf.HDUList(
            [hdu_primary,
             tbl_array_geometry,
             tbl_frequency,
             tbl_antenna,
             tbl_source])

        self.fits = hdulist

        self.stokes_vals = [-5, -6, -7, -8]
        self.readFitsidi(from_file=False, load_uv_data=False)
        #hdulist.verify()

        self.pp.h2("Populating interfits dictionaries")
        self.setDefaults(n_uv_rows=len(bl_lower * n_int))
        self.obs_code = ''
        self.correlator = d.header["INSTRUMENT"]
        self.instrument = d.header["INSTRUMENT"]
        self.telescope = d.header["TELESCOPE"]

        # Compute the integration time
        tsamp = float(d.header["TSAMP"]) * 1e-6  # Sampling time per channel, in microseconds
        navg = int(d.header["NAVG"])  # Number of averages per integration
        int_tim = tsamp * navg  # Integration time is tsamp * navg
        self.t_int = d.t_int

        # Compute time offset
        self.pp.h2("Computing UTC offsets")
        dt_obj = datetime.strptime(d.header["UTC_START"], "%Y-%m-%d-%H:%M:%S")
        time_offset = d.t_offset  # Time offset since observation began
        dt_obj = dt_obj + timedelta(seconds=time_offset)
        date_obs = dt_obj.strftime("%Y-%m-%dT%H:%M:%S")
        dd_obs = dt_obj.strftime("%Y-%m-%d")

        self.pp.pp("UTC START:   %s" % d.header["UTC_START"])
        self.pp.pp("TIME OFFSET: %s" % timedelta(seconds=time_offset))
        self.pp.pp("NEW START:   %s" % date_obs)

        self.date_obs = date_obs
        self.h_params["NSTOKES"] = 4
        self.h_params["NBAND"] = 1
        self.h_params["NCHAN"] = d.n_chans
        self.h_common["NO_CHAN"] = d.n_chans
        self.h_common["REF_FREQ"] = d.c_freq_mhz * 1e6
        self.h_common["CHAN_BW"] = d.chan_bw_mhz * 1e6
        self.h_common["REF_PIXL"] = d.n_chans / 2 + 1
        self.h_common["RDATE"] = dd_obs  # Ignore time component
        self.h_common["STK_1"] = -5

        self.d_frequency["CH_WIDTH"] = d.chan_bw_mhz * 1e6
        self.d_frequency["TOTAL_BANDWIDTH"] = d.bandwidth_mhz * 1e6
        self.stokes_axis = ['XX', 'YY', 'XY', 'YX']
        self.stokes_vals = [-5, -6, -7, -8]

        self.d_array_geometry["ANNAME"] = ["Stand%03d" % i for i in range(len(self.d_array_geometry["ANNAME"]))]
        self.d_array_geometry["NOSTA"] = [i for i in range(len(self.d_array_geometry["NOSTA"]))]

        self.d_uv_data["INTTIM"] = np.ones_like(self.d_uv_data["INTTIM"]) * d.t_int

        # Recreate list of baselines
        bl_ids, ant_arr = coords.generateBaselineIds(self.n_ant, autocorrs=True)
        n_iters = int(len(self.d_uv_data["BASELINE"]) / len(bl_ids))

        self.pp.h2("Generating timestamps")
        dd, tt = [], []
        for ii in range(n_iters):
            jd, jt = coords.convertToJulianTuple(self.date_obs)
            tdelta = int_tim * ii / 86400.0  # In days
            jds = [jd for jj in range(len(ant_arr))]
            jts = [jt + tdelta for jj in range(len(ant_arr))]
            dd.append(jds)
            tt.append(jts)

        self.d_uv_data["DATE"] = np.array(dd, dtype='float64').ravel()
        self.d_uv_data["TIME"] = np.array(tt, dtype='float64').ravel()

        # Load array geometry from file, based on TELESCOP name
        self.loadAntArr()
コード例 #6
0
ファイル: ledafits.py プロジェクト: telegraphic/interfits
    def readLfile(self, n_ant=32, n_chans=600, n_stk=4, config_xml=None):
        """ Read a LEDA L-file 
        
        filename: str
            name of L-file
        n_ant: int
            Number of antennas. Defaults to 256
        n_pol: int
            Number of polarizations. Defaults to 2 (dual-pol)
        n_chans: int
            Number of channels in file. Defaults to 109 (LEDA-512 default)
        n_stk: int
            Number of stokes parameters in file. Defaults to 4
        config_xml: str
            Filename of XML schema file. If None, will default to [filename].xml

        Notes
        -----

        .LA and .LC are binary data streams.

        .LA files store autocorrelations in the following way:
        t0 |Ant1 109 chans XX | Ant1 109 chans YY| Ant2 ... | AntN ...
        t1 |Ant1 109 chans XX | Ant1 109 chans YY| Ant2 ... | AntN ...
        These are REAL VALUED (1x float)

        .LC files store ant1 XY and are upper triangular, so
        1x1y| 1x2x | 1x2y | ... | 1x32y | 
              2x2y | 2x3x | ... |  ...  |
                     3x3y | ... |  ...  |
        These are COMPLEX VALUED (2xfloats)

        """

        self.pp.h1("Opening L-file")
        filename = self.filename.rstrip('.LA').rstrip('.LC')
        if config_xml is None:
            config_xml = filename + '.xml'
        try:
            self.xmlData = etree.parse(config_xml)
        except IOError:
            self.pp.err("ERROR: Cannot open %s" % config_xml)
            exit()

        # Load visibility data
        self.pp.h2("Loading visibility data")
        vis = self._readLfile(n_ant=n_ant, n_pol=2, n_chans=n_chans)

        self.pp.h2("Generating baseline IDs")
        # Create baseline IDs using MIRIAD >255 antenna format (which sucks)
        bls, ant_arr = coords.generateBaselineIds(n_ant)

        bl_lower = []
        for dd in range(vis.shape[0]):
            bl_lower += bls

        self.pp.h2("Converting visibilities to FLUX columns")
        flux = np.zeros([len(bl_lower), n_chans * n_stk * 2], dtype='float32')
        for ii in range(len(bl_lower)):
            ant1, ant2 = ant_arr[ii % len(ant_arr)]
            idx1, idx2 = 2 * (ant1 - 1), 2 * (ant2 - 1)
            xx = vis[0, idx1, idx2]
            yy = vis[0, idx1 + 1, idx2 + 1]
            xy = vis[0, idx1, idx2 + 1]
            yx = vis[0, idx1 + 1, idx2]
            flux[ii] = np.column_stack((xx, yy, xy, yx)).flatten()

        self.d_uv_data["BASELINE"] = bl_lower
        self.d_uv_data["FLUX"] = flux

        self.pp.h1("Generating FITS-IDI schema from XML")
        hdu_primary = make_primary(config=config_xml)
        tbl_array_geometry = make_array_geometry(config=config_xml, num_rows=n_ant)
        tbl_antenna = make_antenna(config=config_xml, num_rows=n_ant)
        tbl_frequency = make_frequency(config=config_xml, num_rows=1)
        tbl_source = make_source(config=config_xml, num_rows=1)

        #h1('Creating HDU list')
        hdulist = pf.HDUList(
            [hdu_primary,
             tbl_array_geometry,
             tbl_frequency,
             tbl_antenna,
             tbl_source])

        # We are now ready to back-fill Interfits dictionaries using readfitsidi
        self.fits = hdulist
        self.readFitsidi(from_file=False, load_uv_data=False)

        self.pp.h2("Populating interfits dictionaries")
        # Create interfits dictionary entries
        self.setDefaultsLeda(n_uv_rows=len(bl_lower))
        self.telescope = self.h_uv_data["TELESCOP"]
        self.source = self.d_source["SOURCE"][0]