コード例 #1
0
def get_outputs(img, model, preprocess):
    """Computes the averaged heatmap and paf for the given image
    :param multiplier:
    :param origImg: numpy array, the image being processed
    :param model: pytorch model
    :returns: numpy arrays, the averaged paf and heatmap
    """
    inp_size = cfg.DATASET.IMAGE_SIZE

    # padding
    im_croped, im_scale, real_shape = im_transform.crop_with_factor(
        img, inp_size, factor=cfg.MODEL.DOWNSAMPLE, is_ceil=True)

    if preprocess == 'rtpose':
        im_data = rtpose_preprocess(im_croped)

    elif preprocess == 'vgg':
        im_data = vgg_preprocess(im_croped)

    elif preprocess == 'inception':
        im_data = inception_preprocess(im_croped)

    elif preprocess == 'ssd':
        im_data = ssd_preprocess(im_croped)

    batch_images= np.expand_dims(im_data, 0)

    # several scales as a batch
    batch_var = torch.from_numpy(batch_images).cuda().float()
    predicted_outputs, _ = model(batch_var)
    output1, output2 = predicted_outputs[-2], predicted_outputs[-1]
    heatmap = output2.cpu().data.numpy().transpose(0, 2, 3, 1)[0]
    paf = output1.cpu().data.numpy().transpose(0, 2, 3, 1)[0]

    return paf, heatmap, im_scale
コード例 #2
0
def get_outputs(img, model, preprocess, is_gpu=False):
    inp_size = cfg.DATASET.IMAGE_SIZE
    # padding
    im_croped, im_scale, real_shape = im_transform.crop_with_factor(
        img, inp_size, factor=cfg.MODEL.DOWNSAMPLE, is_ceil=True)

    if preprocess == 'rtpose': im_data = rtpose_preprocess(im_croped)
    #elif preprocess == 'vgg':       im_data = vgg_preprocess(im_croped)
    #elif preprocess == 'inception': im_data = inception_preprocess(im_croped)
    #elif preprocess == 'ssd':       im_data = ssd_preprocess(im_croped)

    batch_images = np.expand_dims(im_data, 0)
    # several scales as a batch
    batch_var = torch.from_numpy(batch_images).float()  #.cuda().float()
    if is_gpu:
        batch_var = batch_var.cuda().float()

    predicted_outputs, _ = model(batch_var)
    output1, output2 = predicted_outputs[-2], predicted_outputs[-1]
    heatmap = output2.cpu().data.numpy().transpose(0, 2, 3, 1)[0]
    paf = output1.cpu().data.numpy().transpose(0, 2, 3, 1)[0]

    return paf, heatmap, im_scale
def get_outputs(multiplier, img, model, preprocess):
    """Computes the averaged heatmap and paf for the given image
    :param multiplier:
    :param origImg: numpy array, the image being processed
    :param model: pytorch model
    :returns: numpy arrays, the averaged paf and heatmap
    """

    heatmap_avg = np.zeros((img.shape[0], img.shape[1], 19))
    paf_avg = np.zeros((img.shape[0], img.shape[1], 38))
    max_scale = multiplier[-1]
    max_size = max_scale * img.shape[0]
    # padding
    max_cropped, _, _ = im_transform.crop_with_factor(img,
                                                      max_size,
                                                      factor=8,
                                                      is_ceil=True)
    batch_images = np.zeros(
        (len(multiplier), 3, max_cropped.shape[0], max_cropped.shape[1]))

    for m in range(len(multiplier)):
        scale = multiplier[m]
        inp_size = scale * img.shape[0]

        # padding
        im_croped, im_scale, real_shape = im_transform.crop_with_factor(
            img, inp_size, factor=8, is_ceil=True)

        if preprocess == 'rtpose':
            im_data = rtpose_preprocess(im_croped)

        elif preprocess == 'vgg':
            im_data = vgg_preprocess(im_croped)

        elif preprocess == 'inception':
            im_data = inception_preprocess(im_croped)

        elif preprocess == 'ssd':
            im_data = ssd_preprocess(im_croped)

        batch_images[m, :, :im_data.shape[1], :im_data.shape[2]] = im_data

    # several scales as a batch
    batch_var = torch.from_numpy(batch_images).cuda().float()
    predicted_outputs, _ = model(batch_var)
    output1, output2 = predicted_outputs[-2], predicted_outputs[-1]
    heatmaps = output2.cpu().data.numpy().transpose(0, 2, 3, 1)
    pafs = output1.cpu().data.numpy().transpose(0, 2, 3, 1)

    for m in range(len(multiplier)):
        scale = multiplier[m]
        inp_size = scale * img.shape[0]

        # padding
        im_cropped, im_scale, real_shape = im_transform.crop_with_factor(
            img, inp_size, factor=8, is_ceil=True)
        heatmap = heatmaps[m, :int(im_cropped.shape[0] /
                                   8), :int(im_cropped.shape[1] / 8), :]
        heatmap = cv2.resize(heatmap,
                             None,
                             fx=8,
                             fy=8,
                             interpolation=cv2.INTER_CUBIC)
        heatmap = heatmap[0:real_shape[0], 0:real_shape[1], :]
        heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]),
                             interpolation=cv2.INTER_CUBIC)

        paf = pafs[m, :int(im_cropped.shape[0] / 8), :int(im_cropped.shape[1] /
                                                          8), :]
        paf = cv2.resize(paf, None, fx=8, fy=8, interpolation=cv2.INTER_CUBIC)
        paf = paf[0:real_shape[0], 0:real_shape[1], :]
        paf = cv2.resize(paf, (img.shape[1], img.shape[0]),
                         interpolation=cv2.INTER_CUBIC)

        heatmap_avg = heatmap_avg + heatmap / len(multiplier)
        paf_avg = paf_avg + paf / len(multiplier)

    return paf_avg, heatmap_avg