class LaCReME(page_replacement_algorithm): def __init__(self, N): self.N = N self.CacheRecency = Disk(N) self.CacheFrequecy = priorityqueue(N) self.Hist1 = Disk(N) self.Hist2 = priorityqueue(N) ## Config variables self.decayRate = 1 self.epsilon = 0.05 self.lamb = 0.05 self.learning_phase = N / 2 # self.error_discount_rate = (0.005)**(1.0/N) ## TODO ADD BACK self.error_discount_rate = 1 ## self.learning = True self.policy = 0 self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} self.freq = {} ## TODO add decay_time and decay_factor self.decay_time = N self.decay_factor = 1 ## Accounting variables self.time = 0 self.W = np.array([.5, .5], dtype=np.float32) self.X = np.array([], dtype=np.int32) self.Y1 = np.array([]) self.Y2 = np.array([]) def get_N(self): return self.N def visualize(self, plt): # print(np.min(self.X), np.max(self.X)) ax = plt.subplot(2, 1, 1) ax.set_xlim(np.min(self.X), np.max(self.X)) l1, = plt.plot(self.X, self.Y1, 'b-', label='W_lru') l2, = plt.plot(self.X, self.Y2, 'r-', label='W_lfu') return [l1, l2] ########################################## ## Add a page to cache using policy 'poly' ########################################## def addToCache(self, page, pagefreq=0): self.CacheRecency.add(page) self.CacheFrequecy.add(page) self.CacheRecency.increaseCount(page, amount=pagefreq) self.CacheFrequecy.increase(page, amount=pagefreq) ###################### ## Get LFU or LFU page ###################### def selectEvictPage(self, policy): r = self.CacheRecency.getIthPage(0) f = self.CacheFrequecy.peaktop() pageToEvit, policyUsed = None, None if r == f: pageToEvit, policyUsed = r, -1 elif policy == 0: pageToEvit, policyUsed = r, 0 elif policy == 1: pageToEvit, policyUsed = f, 1 return pageToEvit, policyUsed def evictPage(self, pg): self.CacheRecency.delete(pg) self.CacheFrequecy.delete(pg) ############################################################## ## There was a page hit to 'page'. Update the data structures ############################################################## def pageHitUpdate(self, page): if page in self.CacheRecency and page in self.CacheFrequecy: self.CacheRecency.moveBack(page) self.CacheRecency.increaseCount(page) self.CacheFrequecy.increase(page) ######################### ## Get the Q distribution ######################### def getQ(self): return (1 - self.lamb) * self.W + self.lamb * np.ones(2) / 2 ############################################ ## Choose a page based on the q distribution ############################################ def chooseRandom(self): q = self.getQ() r = np.random.rand() for i, p in enumerate(q): if r < p: return i return len(q) - 1 def updateWeight(self, cost): self.W = self.W * (1 - self.epsilon * cost) self.W = self.W / np.sum(self.W) ######################################################################################################################################## ####REQUEST############################################################################################################################# ######################################################################################################################################## def request(self, page): page_fault = False self.time = self.time + 1 # if self.time % self.learning_phase == 0 : # self.learning = not self.learning ##################### ## Visualization data ##################### prob = self.getQ() self.X = np.append(self.X, self.time) self.Y1 = np.append(self.Y1, prob[0]) self.Y2 = np.append(self.Y2, prob[1]) if self.time % self.N == 0: self.CacheFrequecy.decay(self.decay_factor) self.Hist2.decay(self.decay_factor) ########################## ## Process page request ########################## if page in self.CacheFrequecy: page_fault = False self.pageHitUpdate(page) else: ##################################################### ## Learning step: If there is a page fault in history ##################################################### pageevict, histpage_freq = None, 1 policyUsed = -1 if page in self.Hist1: pageevict = page histpage_freq = self.Hist1.getCount(page) self.Hist1.delete(page) policyUsed = 0 self.W[0] = self.W[0] * ( 1 - self.epsilon) if self.policyUsed[page] != -1 else self.W[0] elif page in self.Hist2: pageevict = page histpage_freq = self.Hist2.getCount( page) ## Get the page frequency in history self.Hist2.delete(page) policyUsed = 1 self.W[1] = self.W[1] * ( 1 - self.epsilon) if self.policyUsed[page] != -1 else self.W[1] self.W = self.W / np.sum(self.W) # if pageevict is not None : # q = self.weightsUsed[pageevict] # # err = self.error_discount_rate ** (self.time - self.evictionTime[pageevict]) # err = 1 # reward = np.array([0,0], dtype=np.float32) # if policyUsed == 0 : # LRU # reward[0] = err # if policyUsed == 1: # reward[1] = err # reward_hat = reward ################# ## Update Weights ################# # if self.policyUsed[pageevict] != -1 : # # self.W = self.W * np.exp(self.lamb * reward_hat / 2) # self.W = self.W * (1 - reward*self.epsilon) # self.W = self.W / np.sum(self.W) #################### ## Remove from Cache #################### if self.CacheRecency.size() == self.N: ################ ## Choose Policy ################ # if not self.learning : # act = np.argmax(self.getQ()) # else : # act = self.chooseRandom() act = np.argmax(self.W) ## REMOVE cacheevict, poly = self.selectEvictPage(act) pagefreq = self.CacheFrequecy.getCount(cacheevict) self.policyUsed[cacheevict] = poly self.weightsUsed[cacheevict] = self.getQ() self.evictionTime[cacheevict] = self.time ## TODO ADD BACK # if not self.learning : # self.policyUsed[cacheevict] = -1 ################### ## Evict to history ################### histevict = None if (poly == 0) or (poly == -1 and np.random.rand() < 0.5): if self.Hist1.size() == self.N: histevict = self.Hist1.getIthPage(0) self.Hist1.delete(histevict) self.Hist1.add(cacheevict) self.Hist1.setCount(cacheevict, pagefreq) else: if self.Hist2.size() == self.N: histevict = self.Hist2.popmin() self.Hist2.add(cacheevict) self.Hist2.increase(cacheevict, pagefreq - 1) if histevict is not None: del self.evictionTime[histevict] del self.policyUsed[histevict] del self.weightsUsed[histevict] self.evictPage(cacheevict) self.addToCache(page, pagefreq=histpage_freq) page_fault = True return page_fault def get_list_labels(self): return ['L']
class BANDIT_DOUBLE_HIST(page_replacement_algorithm): def __init__(self, N): self.N = N self.Cache = Disk(N) self.Hist1 = Disk(N) self.Hist2 = Disk(N) ## Config variables self.decayRate = 0.99 self.epsilon = 0.95 self.lamb = 0.05 self.learning_phase = N / 2 self.error_discount_rate = (0.005)**(1.0 / N) ## self.learning = True self.policy = 0 self.accessedTime = {} self.frequency = {} self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} ## Accounting variables self.time = 0 self.W = np.array([.5, .5], dtype=np.float32) self.X = np.array([]) self.Y1 = np.array([]) self.Y2 = np.array([]) def get_N(self): return self.N def visualize(self, plt): print('visualize') l1, = plt.plot(self.X, self.Y1, 'b-', label='W_lru') l2, = plt.plot(self.X, self.Y2, 'r-', label='W_lfu') plt.xlabel('time') plt.ylabel('Weight') plt.legend(handles=[l1, l2]) # plt.show() # print('W = ', self.W) def __keyWithMinVal(self, d): v = list(d.values()) k = list(d.keys()) return k[v.index(min(v))] def getMinValueFromCache(self, values): minpage, first = -1, True for q in self.Cache: if first or values[q] < values[minpage]: minpage, first = q, False return minpage def selectEvictPage(self, policy): r = self.getMinValueFromCache(self.accessedTime) f = self.getMinValueFromCache(self.frequency) # if r == f : # return r,-1 if policy == 0: return r, 0 return f, 1 def countUniquePagesSince(self, t): cnt = 0 for p in self.Cache: if self.accessedTime[p] > t: cnt += 1 for p in self.Hist1: if self.accessedTime[p] > t: cnt += 1 for p in self.Hist2: if self.accessedTime[p] > t: cnt += 1 return cnt def getQ(self): return (1 - self.lamb) * self.W + self.lamb * np.ones(2) / 2 # return self.W def chooseRandom(self): q = self.getQ() r = np.random.rand() # if self.time < 10000 + 1751 and self.time > 1751: # print('r = ', r, 'q = ', q) for i, p in enumerate(q): if r < p: return i return len(q) - 1 def updateWeight(self, cost): self.W = self.W * (1 - self.epsilon * cost) self.W = self.W / np.sum(self.W) ######################################################################################################################################## ####REQUEST############################################################################################################################# ######################################################################################################################################## def request(self, page): page_fault = False self.time = self.time + 1 ############################ ## Save data for training ## ############################ if self.time % self.learning_phase == 0: self.learning = not self.learning ## Visualization data prob = self.getQ() self.X = np.append(self.X, self.time) self.Y1 = np.append(self.Y1, prob[0]) self.Y2 = np.append(self.Y2, prob[1]) ######################### ## Process page reques ## ######################### if page in self.Cache: page_fault = False else: pageevict = None policyUsed = -1 if page in self.Hist1: pageevict = page self.Hist1.delete(page) policyUsed = 0 elif page in self.Hist2: pageevict = page self.Hist2.delete(page) policyUsed = 1 if pageevict is not None: q = self.weightsUsed[pageevict] err = self.error_discount_rate**(self.time - self.evictionTime[pageevict]) reward = np.array([0, 0], dtype=np.float32) if policyUsed == 0: reward[1] = err if policyUsed == 1: reward[0] = err reward_hat = reward / q # print('self.policyUsed[%d] = %d' % (pageevict,self.policyUsed[pageevict] )) ## Update Weights if self.policyUsed[pageevict] != -1: # print('Updating weights') self.W = self.W * np.exp(self.lamb * reward_hat / 2) self.W = self.W / np.sum(self.W) ## Remove from Cache if self.Cache.size() == self.N: if not self.learning: act = np.argmax(self.getQ()) else: act = self.chooseRandom() # act = self.chooseRandom() cacheevict, poly = self.selectEvictPage(act) self.policyUsed[cacheevict] = poly # if self.time < 10000 + 1751 and self.time > 1751: # if act == 1 : # print('LFU') if not self.learning: self.policyUsed[cacheevict] = -1 self.Cache.delete(cacheevict) self.weightsUsed[cacheevict] = self.getQ() self.evictionTime[cacheevict] = self.time histevict = -1 if act == 0: if self.Hist1.size() == self.N: histevict = self.Hist1.getIthPage(0) self.Hist1.delete(histevict) self.Hist1.add(cacheevict) # print('Adding %d to hist1' % cacheevict) if act == 1: if self.Hist2.size() == self.N: histevict = self.Hist2.getIthPage(0) self.Hist2.delete(histevict) self.Hist2.add(cacheevict) # print('Adding %d to hist2' % cacheevict) if histevict != -1: del self.evictionTime[histevict] del self.accessedTime[histevict] del self.frequency[histevict] del self.policyUsed[histevict] del self.weightsUsed[histevict] # print('act = ', act) # self.Hist.add(evictPage) if page not in self.frequency: self.frequency[page] = 0 self.Cache.add(page) page_fault = True for q in self.Cache: self.frequency[q] *= self.decayRate self.frequency[page] += 1 self.accessedTime[page] = self.time return page_fault def get_list_labels(self): return ['L']
class ARCOPT(page_replacement_algorithm): def __init__(self, N, traces): self.T = [] self.N = N self.T1 = Disk(N) self.T2 = Disk(N) self.B1 = Disk(N) self.B2 = Disk(2 * N) self.P = 0 self.page_request_time = {} ## for i, p in enumerate(traces): if p not in self.page_request_time: self.page_request_time[p] = Queue.Queue() self.page_request_time[p].put(i) def get_N(self): return self.N def request(self, page): x = self.page_request_time[page].get() #print self.T1.size(), self.T2.size() page_fault = False #if inList(self.T, page): if self.T1.inDisk(page) or self.T2.inDisk(page): #self.T = moveToMRU(self.T,page) if page in self.T1: self.T1.delete(page) if page in self.T2: self.T2.delete(page) if not self.T2.add(page): print('failed adding at Case 1') elif self.B1.inDisk(page): self.__replace(page) self.B1.delete(page) if not self.T2.add(page): print('failed adding at B1') page_fault = True elif self.B2.inDisk(page): self.__replace(page) self.B2.delete(page) if not self.T2.add(page): print('failed adding at B2') page_fault = True else: t1 = self.T1.size() t2 = self.T2.size() b1 = self.B1.size() b2 = self.B2.size() if t1 + b1 == self.N: if t1 < self.N: self.B1.deleteFront() self.__replace(page) else: self.T1.deleteFront() elif t1 + b1 < self.N: if t1 + t2 + b1 + b2 >= self.N: if t1 + t2 + b1 + b2 == 2 * self.N: self.B2.deleteFront() self.__replace(page) # Add page to the MRU position in T1 # self.T.append(page) if not self.T1.add(page): print('failed adding at case 4') page_fault = True return page_fault def __replace(self, x): if self.T1.size() == 0: y = self.T2.deleteFront() if not y == None: self.B2.add(y) elif self.T2.size() == 0: y = self.T1.deleteFront() if not y == None: self.B1.add(y) else: t1_page = self.T1.getIthPage(0) t2_page = self.T2.getIthPage(0) if not self.page_request_time[t1_page].empty(): page1_time = self.page_request_time[t1_page].queue[0] else: page1_time = int(1e15) if not self.page_request_time[t2_page].empty(): page2_time = self.page_request_time[t2_page].queue[0] else: page2_time = int(1e15) if page1_time > page2_time: y = self.T2.deleteFront() if not y == None: self.B2.add(y) else: y = self.T1.deleteFront() if not y == None: self.B1.add(y) def get_data(self): return [ self.T1.get_data(), self.T2.get_data(), self.B1.get_data(), self.B2.get_data() ] def get_list_labels(self): return ['T1', 'T2', 'B1', 'B2']
class BANDIT(page_replacement_algorithm): def __init__(self, N): self.N = N self.Cache = Disk(N) self.Hist = Disk(N) ## Config variables self.decayRate = 0.99 self.epsilon = 0.99 self.lamb = 0.05 ## self.accessedTime = {} self.frequency = {} self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} ## Accounting variables self.time = 0 self.W = np.array([.5, .5], dtype=np.float32) self.X = np.array([]) self.Y1 = np.array([]) self.Y2 = np.array([]) def get_N(self): return self.N def visualize(self): l1, = plt.plot(self.X, self.Y1, 'b-', label='W0') l2, = plt.plot(self.X, self.Y2, 'r-', label='W1') plt.xlabel('time') plt.ylabel('W') plt.legend(handles=[l1, l2]) plt.show() # print('W = ', self.W) def __keyWithMinVal(self, d): v = list(d.values()) k = list(d.keys()) return k[v.index(min(v))] def getMinValueFromCache(self, values): minpage, first = -1, True for q in self.Cache: if first or values[q] < values[minpage]: minpage, first = q, False return minpage def selectEvictPage(self, policy): r = self.getMinValueFromCache(self.accessedTime) f = self.getMinValueFromCache(self.frequency) if r == f: return r, -1 if policy == 0: return r, 0 return f, 1 def countUniquePagesSince(self, t): cnt = 0 for p in self.Cache: if self.accessedTime[p] > t: cnt += 1 for p in self.Hist: if self.accessedTime[p] > t: cnt += 1 return cnt def getQ(self): return (1 - self.lamb) * self.W + self.lamb * np.ones(2) / 2 # return self.W def chooseRandom(self): q = self.getQ() r = np.random.rand() for i, p in enumerate(q): if r < p: return i return len(q) - 1 def updateWeight(self, cost): self.W = self.W * (1 - self.epsilon * cost) self.W = self.W / np.sum(self.W) ######################################################################################################################################## ####REQUEST############################################################################################################################# ######################################################################################################################################## def request(self, page): page_fault = False self.time = self.time + 1 ############################ ## Save data for training ## ############################ self.X = np.append(self.X, self.time) self.Y1 = np.append(self.Y1, self.W[0]) self.Y2 = np.append(self.Y2, self.W[1]) ######################### ## Process page reques ## ######################### if page in self.Cache: page_fault = False else: if page in self.Hist: self.Hist.delete(page) ## Update weights poly = self.policyUsed[page] q = self.weightsUsed[page] uniq = self.countUniquePagesSince(self.accessedTime[page]) cost = np.array([0, 0], dtype=np.float32) if poly == 0: cost[0] = 1 if poly == 1: cost[1] = 1 if uniq < self.N: cost = cost * (1.0 / uniq) self.updateWeight(cost) del self.evictionTime[page] del self.accessedTime[page] del self.frequency[page] del self.policyUsed[page] del self.weightsUsed[page] ## Remove from Hist if self.Hist.size() == self.N: evictPage = self.Hist.getIthPage(0) self.Hist.delete(evictPage) ## Update weights del self.evictionTime[evictPage] del self.accessedTime[evictPage] del self.frequency[evictPage] del self.policyUsed[evictPage] del self.weightsUsed[evictPage] ## Remove from Cache if self.Cache.size() == self.N: act = self.chooseRandom() evictPage, self.policyUsed[evictPage] = self.selectEvictPage( act) self.weightsUsed[evictPage] = self.getQ() self.Cache.delete(evictPage) self.evictionTime[evictPage] = self.time self.Hist.add(evictPage) self.frequency[page] = 0 self.Cache.add(page) page_fault = True for q in self.Cache: self.frequency[q] *= self.decayRate self.frequency[page] += 1 self.accessedTime[page] = self.time return page_fault def get_list_labels(self): return ['L']
class ExpertLearning_v2(page_replacement_algorithm): def __init__(self, N): self.T = [] self.N = N self.disk = Disk(N) self.freq = {} ## Training variables self.X, self.Y = [], [] self.reward = [] self.regret = [] ## Config variables self.batchsize = N self.numbatch = 5 self.discountrate = 0.9 self.error = 0.5 self.reduceErrorRate = 0.975 ## Aux variables self.cachebuff = dequecustom() self.Xbuff = dequecustom() self.Ybuff = dequecustom() self.pageHitBuff = dequecustom() self.hist = dequecustom() self.batchsizeBuff = dequecustom() ## Accounting variables self.currentPageHits = 0 self.current = 0 self.uniquePages = Counter() ## Batch action variable self.action = [0] #self.discount = 0.9 #self.sampleCount = 0 #self.trainingSampleSize = 5 * N ## start tf tf.reset_default_graph() self.input = tf.placeholder(shape=[1, self.N], dtype=tf.float32) W1 = tf.Variable(tf.random_uniform([self.N, 8], 0, 0.01)) out1 = tf.sigmoid(tf.matmul(self.input, W1)) W2 = tf.Variable(tf.random_uniform([8, 2], 0, 0.01)) self.out = tf.matmul(out1, W2) self.predictaction = tf.argmax(self.out) self.nextQ = tf.placeholder(shape=[1, 2], dtype=tf.float32) loss = tf.reduce_sum(tf.square(self.out - self.nextQ)) trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1) self.updatemodel = trainer.minimize(loss) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def get_N(self): return self.N def __keyWithMinVal(self, d): v = list(d.values()) k = list(d.keys()) return k[v.index(min(v))] def __discountedReward(self, reward): discounted_reward = np.zeros(len(reward)) rsum = 0 for t in reversed(range(0, len(reward))): rsum = self.discount * rsum + reward[t] discounted_reward[t] = rsum return discounted_reward def __getRegret(self): cache = set(self.cachebuff.getleft()) requestSequence = list(self.hist) ## Compute distance dist = {} for j, p in enumerate(requestSequence): if p not in dist: dist[p] = dequecustom() dist[p].append(j) discountedregret = 0 i = 0 batchid = 0 optsum = 0 hitsum = 0 for hits, sz in zip(self.pageHitBuff, self.batchsizeBuff): opthits = 0 batchid += 1 for _ in range(0, sz): p = requestSequence[i] i += 1 if p in cache: opthits += 1 else: if len(cache) >= self.N: rem = 'xxxxxxxxxxxxx' for c in cache: if c not in dist or len(dist[c]) == 0: rem = c break if rem not in dist or dist[c].getleft( ) > dist[rem].getleft(): rem = c ## Evict from cache cache = cache - {rem} ## Add page to cache cache = cache | {p} ## Pop from dist dist[p].popleft() regret = opthits - hits discountedregret = discountedregret + regret * (0.9)**(batchid - 1) optsum += opthits hitsum += hits break return discountedregret def getState(self): x = np.zeros(self.N, np.float32) for i, page in enumerate(self.disk): x[i] = 1.0 * self.freq[page] if np.sum(x) > 0.00001: x = x / np.sum(x) return x ######################################################################################################################################## ####REQUEST############################################################################################################################# ######################################################################################################################################## def request(self, page): page_fault = False ############################ ## Save data for training ## ############################ if len(self.uniquePages) == 0: ## Compute regret for the first batch if len(self.Xbuff) >= self.numbatch: r = self.__getRegret() cache = self.cachebuff.popleft() s1 = np.array(self.Xbuff.popleft()) s2 = np.array(self.Xbuff.getleft()) act = self.Ybuff.popleft() hits = self.pageHitBuff.popleft() sz = self.batchsizeBuff.popleft() for _ in range(0, sz): temp = self.hist.popleft() ############################################################################################################################# ## Train here ############################################################################################################### ############################################################################################################################# allq = self.sess.run(self.out, feed_dict={self.input: s1}) nextq = self.sess.run(self.out, feed_dict={self.input: s2}) Qmax = np.max(nextq) targetQ = allq targetQ[0, act[0]] = r + self.discountrate * Qmax _ = self.sess.run(self.updatemodel, feed_dict={ self.input: s1, self.nextQ: targetQ }) #self.error = self.error * self.reduceErrorRate ##################### ## Choose randomly ## ##################### state = np.array([self.getState()]) #print(state) self.action = self.sess.run(self.predictaction, feed_dict={self.input: state}) if np.random.rand() < self.error: self.action[0] = 0 if np.random.rand() < 0.5 else 1 self.cachebuff.append(self.disk.getData()) self.Xbuff.append(state) self.Ybuff.append(self.action) ######################### ## Process page reques ## ######################### if self.disk.inDisk(page): self.disk.moveBack(page) self.freq[page] += 1 self.currentPageHits += 1 else: if self.disk.size() == self.N: if self.action[0] == 0: ## Remove LRU page lru = self.disk.getIthPage(0) self.disk.delete(lru) del self.freq[lru] elif self.action[0] == 1: ## Remove LFU page lfu = self.__keyWithMinVal(self.freq) self.disk.delete(lfu) del self.freq[lfu] # Add page to the MRU position self.disk.add(page) self.freq[page] = 1 page_fault = True #self.uniquePages = self.uniquePages | {page} self.uniquePages.update({page: 1}) ## Store page hits for current batch if len(self.uniquePages) == self.N: self.pageHitBuff.append(self.currentPageHits) self.batchsizeBuff.append(sum(self.uniquePages.values())) ## Reset variables self.uniquePages.clear() self.currentPageHits = 0 self.hist.append(page) return page_fault def get_data(self): # data = [] # for i,p,m in enumerate(self.T): # data.append((p,m,i,0)) # return data return [self.disk.get_data()] def get_list_labels(self): return ['L']
class LaCReME_context1(page_replacement_algorithm): def __init__(self, N): self.N = N self.CacheRecency = Disk(N) self.CacheFrequecy = priorityqueue(N) self.Hist1 = Disk(N) self.Hist2 = priorityqueue(N) ## Config variables self.decayRate = 1 self.epsilon = 0.90 self.lamb = 0.05 self.learning_phase = N/2 self.error_discount_rate = (0.005)**(1.0/N) # self.error_discount_rate = 1 ## self.learning = True self.policy = 0 self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} self.freq = {} ## TODO add decay_time and decay_factor self.decay_time = N self.decay_factor = 1 ## Accounting variables self.time = 0 self.W = np.zeros((10,2)) self.W[:,:] = 0.5 self.X = np.array([],dtype=np.int32) self.Y1 = np.array([]) self.Y2 = np.array([]) ### self.q = Queue.Queue() self.sum = 0 self.NewPages = [] def get_N(self) : return self.N def visualize(self, plt): # print(np.min(self.X), np.max(self.X)) ax = plt.subplot(2,1,1) ax.set_xlim(np.min(self.X), np.max(self.X)) l1, = plt.plot(self.X,self.Y1, 'b-', label='W_lru') l2, = plt.plot(self.X,self.Y2, 'r-', label='W_lfu') l3, = plt.plot(self.X, self.NewPages, 'g-', label='New Pages') return [l1,l2,l3] def __keyWithMinVal(self,d): v=list(d.values()) k=list(d.keys()) return k[v.index(min(v))] def getMinValueFromCache(self, values): minpage,first = -1, True for q in self.Cache : if first or values[q] < values[minpage] : minpage,first=q,False return minpage ########################################## ## Add a page to cache using policy 'poly' ########################################## def addToCache(self, page,pagefreq=0): self.CacheRecency.add(page) self.CacheFrequecy.add(page) self.CacheRecency.increaseCount(page, amount=pagefreq) self.CacheFrequecy.increase(page, amount=pagefreq) ###################### ## Get LFU or LFU page ###################### def selectEvictPage(self, policy): r = self.CacheRecency.getIthPage(0) f = self.CacheFrequecy.peaktop() pageToEvit,policyUsed = None, None if r == f : pageToEvit,policyUsed = r,-1 elif policy == 0: pageToEvit,policyUsed = r,0 elif policy == 1: pageToEvit,policyUsed = f,1 return pageToEvit,policyUsed def evictPage(self, pg): self.CacheRecency.delete(pg) self.CacheFrequecy.delete(pg) ############################################################## ## There was a page hit to 'page'. Update the data structures ############################################################## def pageHitUpdate(self, page): if page in self.CacheRecency and page in self.CacheFrequecy: self.CacheRecency.moveBack(page) self.CacheRecency.increaseCount(page) self.CacheFrequecy.increase(page) ######################### ## Get the Q distribution ######################### def getQ(self,wid): return (1-self.lamb) * self.W[wid] + self.lamb*np.ones(2)/2 ############################################ ## Choose a page based on the q distribution ############################################ def chooseRandom(self, wid): q = self.getQ(wid) r = np.random.rand() for i,p in enumerate(q): if r < p: return i return len(q)-1 def updateWeight(self, cost): self.W = self.W * (1-self.epsilon * cost) self.W = self.W / np.sum(self.W) ######################################################################################################################################## ####REQUEST############################################################################################################################# ######################################################################################################################################## def request(self,page) : page_fault = False self.time = self.time + 1 # if self.time % self.learning_phase == 0 : # self.learning = not self.learning partitions = 5 newpagesratio = 1.0*self.sum / self.N weigthid = int(newpagesratio*partitions) if newpagesratio < 1.0 else partitions-1 ##################### ## Visualization data ##################### prob = self.getQ(weigthid) self.X = np.append(self.X, self.time) self.Y1 = np.append(self.Y1, prob[0]) self.Y2 = np.append(self.Y2, prob[1]) notInHistory = 0 ########################## ## Process page request ########################## if page in self.CacheFrequecy: page_fault = False self.pageHitUpdate(page) else : ##################################################### ## Learning step: If there is a page fault in history ##################################################### pageevict, histpage_freq = None,1 policyUsed = -1 if page in self.Hist1: pageevict = page histpage_freq = self.Hist1.getCount(page) self.Hist1.delete(page) policyUsed = 0 elif page in self.Hist2: pageevict = page histpage_freq = self.Hist2.getFreq(page) ## Get the page frequency in history self.Hist2.delete(page) policyUsed = 1 else: notInHistory = 1 if pageevict is not None : q = self.weightsUsed[pageevict] err = self.error_discount_rate ** (self.time - self.evictionTime[pageevict]) reward = np.array([0,0], dtype=np.float32) if policyUsed == 0 : # LRU reward[1] = err if policyUsed == 1: reward[0] = err reward_hat = reward / q ################# ## Update Weights ################# if self.policyUsed[pageevict] != -1 : self.W[weigthid] = self.W[weigthid] * np.exp(self.lamb * reward_hat / 2) self.W[weigthid] = self.W[weigthid] / np.sum(self.W[weigthid]) #################### ## Remove from Cache #################### if self.CacheRecency.size() == self.N: ################ ## Choose Policy ################ if not self.learning : act = np.argmax(self.W[weigthid]) else : act = self.chooseRandom(weigthid) cacheevict,poly = self.selectEvictPage(act) pagefreq = self.CacheFrequecy.getCount(cacheevict) self.policyUsed[cacheevict] = poly self.weightsUsed[cacheevict] = self.getQ(weigthid) self.evictionTime[cacheevict] = self.time if not self.learning : self.policyUsed[cacheevict] = -1 ################### ## Evict to history ################### histevict = None if (poly == 0) or (poly==-1 and np.random.rand() <0.5): if self.Hist1.size() == self.N : histevict = self.Hist1.getIthPage(0) self.Hist1.delete(histevict) self.Hist1.add(cacheevict) self.Hist1.setCount(cacheevict, pagefreq) else: if self.Hist2.size() == self.N : histevict = self.Hist2.popmin() self.Hist2.add(cacheevict) self.Hist2.increase(cacheevict, pagefreq-1) if histevict is not None : del self.evictionTime[histevict] del self.policyUsed[histevict] del self.weightsUsed[histevict] self.evictPage(cacheevict) self.addToCache(page, pagefreq=histpage_freq) page_fault = True self.q.put(notInHistory) self.sum += notInHistory if self.q.qsize() > self.N: self.sum -= self.q.get() self.NewPages.append(newpagesratio) return page_fault def get_list_labels(self) : return ['L']
class LaCReME_simple(page_replacement_algorithm): def __init__(self, N): self.N = N self.CacheRecency = Disk(N) self.CacheFrequecy = priorityqueue(N) self.Hist1 = Disk(N) self.Hist2 = priorityqueue(N) ## Config variables self.decayRate = 1 self.epsilon = 0.05 self.learning_phase = N / 2 ## self.learning = True self.policy = 0 self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} self.freq = {} ## TODO add decay_time and decay_factor self.decay_time = N self.decay_factor = 1 ## Accounting variables self.time = 0 self.W = np.array([.5, .5], dtype=np.float32) ## For visualization self.X = np.array([], dtype=np.int32) self.Y1 = np.array([]) self.Y2 = np.array([]) def get_N(self): return self.N def visualize(self, plt): ax = plt.subplot(2, 1, 1) ax.set_xlim(np.min(self.X), np.max(self.X)) l1, = plt.plot(self.X, self.Y1, 'b-', label='W_lru') l2, = plt.plot(self.X, self.Y2, 'r-', label='W_lfu') return [l1, l2] ########################################## ## Add a page to cache using policy 'poly' ########################################## def addToCache(self, page, pagefreq=0): self.CacheRecency.add(page) self.CacheFrequecy.add(page) self.CacheRecency.increaseCount(page, amount=pagefreq) self.CacheFrequecy.increase(page, amount=pagefreq) ###################### ## Get LFU or LFU page ###################### def selectEvictPage(self, policy): r = self.CacheRecency.getIthPage(0) f = self.CacheFrequecy.peaktop() pageToEvit, policyUsed = None, None if r == f: pageToEvit, policyUsed = r, -1 elif policy == 0: pageToEvit, policyUsed = r, 0 elif policy == 1: pageToEvit, policyUsed = f, 1 return pageToEvit, policyUsed def evictPage(self, pg): self.CacheRecency.delete(pg) self.CacheFrequecy.delete(pg) ############################################################## ## There was a page hit to 'page'. Update the data structures ############################################################## def pageHitUpdate(self, page): if page in self.CacheRecency and page in self.CacheFrequecy: self.CacheRecency.moveBack(page) self.CacheRecency.increaseCount(page) self.CacheFrequecy.increase(page) ############################################ ## Choose a page based on the q distribution ############################################ def chooseRandom(self): q = self.getQ() r = np.random.rand() for i, p in enumerate(q): if r < p: return i return len(q) - 1 ################## ####REQUEST####### ################## def request(self, page): page_fault = False self.time = self.time + 1 ##################### ## Visualization data ##################### self.X = np.append(self.X, self.time) self.Y1 = np.append(self.Y1, self.W[0]) self.Y2 = np.append(self.Y2, self.W[1]) if self.time % self.N == 0: self.CacheFrequecy.decay(self.decay_factor) self.Hist2.decay(self.decay_factor) ########################## ## Process page request ########################## if page in self.CacheFrequecy: page_fault = False self.pageHitUpdate(page) else: ##################################################### ## Learning step: If there is a page fault in history ##################################################### histpage_freq = 1 if page in self.Hist1: histpage_freq = self.Hist1.getCount(page) self.Hist1.delete(page) self.W[0] = self.W[0] * ( 1 - self.epsilon) if self.policyUsed[page] != -1 else self.W[0] elif page in self.Hist2: histpage_freq = self.Hist2.getCount( page) ## Get the page frequency in history self.Hist2.delete(page) self.W[1] = self.W[1] * ( 1 - self.epsilon) if self.policyUsed[page] != -1 else self.W[1] #################### ## Normalize weights #################### self.W = self.W / np.sum(self.W) #################### ## Remove from Cache #################### if self.CacheRecency.size() == self.N: ################################################################ ## Choose Policy by picking the one with the highest weight ################################################################ act = np.argmax(self.W) cacheevict, poly = self.selectEvictPage(act) pagefreq = self.CacheFrequecy.getCount(cacheevict) self.policyUsed[cacheevict] = poly self.weightsUsed[cacheevict] = self.W self.evictionTime[cacheevict] = self.time ################### ## Evict to history ################### histevict = None if (poly == 0) or (poly == -1 and np.random.rand() < 0.5): if self.Hist1.size() == self.N: histevict = self.Hist1.getIthPage(0) self.Hist1.delete(histevict) self.Hist1.add(cacheevict) self.Hist1.setCount(cacheevict, pagefreq) else: if self.Hist2.size() == self.N: histevict = self.Hist2.popmin() self.Hist2.add(cacheevict) self.Hist2.increase(cacheevict, pagefreq - 1) ################################## ## Remove histevict from the system ################################### if histevict is not None: del self.evictionTime[histevict] del self.policyUsed[histevict] del self.weightsUsed[histevict] ############################################## ## Remove cacheevict from both data structures ############################################## self.evictPage(cacheevict) ################################### ## Add page to both data structures ################################### self.addToCache(page, pagefreq=histpage_freq) page_fault = True return page_fault def get_list_labels(self): return ['L']
class ExpertLearning(page_replacement_algorithm): def __init__(self, N): self.T = [] self.N = N self.disk = Disk(N) self.freq = {} ## Training variables self.X, self.Y = [], [] self.reward = [] self.regret = [] ## Config variables self.batchsize = N self.numbatch = 5 ## Aux variables self.hist = queue.deque() self.Xbuff = queue.deque() self.Ybuff = queue.deque() self.pageHitBuff = deque() self.current = 0 self.action = 1 self.currentPageHits = 0 #self.discount = 0.9 #self.sampleCount = 0 #self.trainingSampleSize = 5 * N def get_N(self): return self.N def __keyWithMinVal(self, d): v = list(d.values()) k = list(d.keys()) return k[v.index(min(v))] def __discountedReward(self, reward): discounted_reward = np.zeros(len(reward)) rsum = 0 for t in reversed(range(0, len(reward))): rsum = self.discount * rsum + reward[t] discounted_reward[t] = rsum return discounted_reward def __getRegret(self): return 0 def getState(self): x = np.zeros(self.N, np.float32) for i, page in enumerate(self.disk): x[i] = 1.0 * self.freq[page] if np.sum(x) > 0.00001: x = x / np.sum(x) return x def request(self, page): page_fault = False ############################ ## Save data for training ## ############################ if self.current == 0: ## Compute regret for the first batch if len(self.hist) == self.numbatch * self.batchsize: reg = self.__getRegret() ## Regret of first n pages x = self.Xbuff.popleft() y = self.Ybuff.popleft() h = self.pageHitBuff.popleft() ## Remove from hist and buffers for _ in range(0, self.N): self.hist.get() ## Choose randomly self.action = 1 if np.random.rand() < 0.5 else 2 self.Xbuff.append(self.getState()) self.Ybuff.append(self.action) ######################### ## Process page reques ## ######################### if self.disk.inDisk(page): self.disk.moveBack(page) self.freq[page] += 1 else: if self.disk.size() == self.N: if self.action == 1: ## Remove LRU page lru = self.disk.getIthPage(0) self.disk.delete(lru) del self.freq[lru] elif self.action == 2: ## Remove LFU page lfu = self.__keyWithMinVal(self.freq) self.disk.delete(lfu) del self.freq[lfu] # Add page to the MRU position self.disk.add(page) self.freq[page] = 1 page_fault = True ## Increate page hits counter self.currentPageHits += 1 * (not page_fault) ## Save page hits for current batch if self.current + 1 == self.batchsize: self.pageHitBuff.append(self.currentPageHits) ## Save page in history self.hist.put(page) ## Increase batch size counter self.current = (self.current + 1) % self.batchsize return page_fault def get_data(self): # data = [] # for i,p,m in enumerate(self.T): # data.append((p,m,i,0)) # return data return [self.disk.get_data()] def get_list_labels(self): return ['L']
class LaCReME_LFU_ARC(page_replacement_algorithm): def __init__(self, N): self.N = N self.CacheARC = ArcDT(N) self.CacheFrequecy = priorityqueue(N) self.Hist1 = Disk(N, name='Hist1') self.Hist2 = Disk(N, name='Hist2') ## Config variables self.decayRate = 1 self.epsilon = 0.90 self.lamb = 0.05 self.learning_phase = N / 2 self.error_discount_rate = (0.005)**(1.0 / N) ## self.learning = True self.policy = 0 self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} self.freq = {} ## TODO add decay_time and decay_factor self.decay_time = N self.decay_factor = 1 ## Accounting variables self.time = 0 self.W = np.array([.5, .5], dtype=np.float32) self.X = np.array([], dtype=np.int32) self.Y1 = np.array([]) self.Y2 = np.array([]) def get_N(self): return self.N def visualize(self, plt): # print(np.min(self.X), np.max(self.X)) ax = plt.subplot(2, 1, 1) ax.set_xlim(np.min(self.X), np.max(self.X)) l1, = plt.plot(self.X, self.Y1, 'b-', label='W_lru') l2, = plt.plot(self.X, self.Y2, 'r-', label='W_lfu') return [l1, l2] def __keyWithMinVal(self, d): v = list(d.values()) k = list(d.keys()) return k[v.index(min(v))] ########################################## ## Add a page to cache using policy 'poly' ########################################## def addToCache(self, page, pagefreq=0): self.CacheARC.request(page) self.CacheARC.setCount(page=page, cnt=pagefreq) self.CacheFrequecy.add(page) self.CacheFrequecy.increase(page, amount=pagefreq) ###################### ## Get LFU or LFU page ###################### def updateCacheUsingPolicy(self, policy, requested_page, page_freq): pageToEvit, policyUsed = None, None if policy == 0: ## Use ARC r = self.CacheARC.request(requested_page) self.CacheARC.setCount(requested_page, page_freq) evict_page_freq = self.CacheFrequecy.getCount(r) # Add page to LFU self.CacheFrequecy.delete(r) self.CacheFrequecy.add(requested_page) pageToEvit, policyUsed = r, 0 elif policy == 1: ## Use LFU evict_page_freq = self.CacheFrequecy.getCount( self.CacheFrequecy.peaktop()) f = self.CacheFrequecy.popmin() self.CacheFrequecy.add(requested_page) ## Add page to arc self.CacheARC.delete(f) self.CacheARC.add(requested_page) pageToEvit, policyUsed = f, 1 return pageToEvit, policyUsed, evict_page_freq def evictPage(self, pg): self.CacheARC.delete(pg) self.CacheFrequecy.delete(pg) ############################################################## ## There was a page hit to 'page'. Update the data structures ############################################################## def pageHitUpdate(self, page): assert page in self.CacheARC and page in self.CacheFrequecy self.CacheARC.request(page) self.CacheFrequecy.increase(page) ######################### ## Get the Q distribution ######################### def getQ(self): return (1 - self.lamb) * self.W + self.lamb * np.ones(2) / 2 ############################################ ## Choose a page based on the q distribution ############################################ def chooseRandom(self): q = self.getQ() r = np.random.rand() for i, p in enumerate(q): if r < p: return i return len(q) - 1 def updateWeight(self, cost): self.W = self.W * (1 - self.epsilon * cost) self.W = self.W / np.sum(self.W) ######################################################################################################################################## ####REQUEST############################################################################################################################# ######################################################################################################################################## def request(self, page): page_fault = False self.time = self.time + 1 # if self.time % self.learning_phase == 0 : # self.learning = not self.learning ##################### ## Visualization data ##################### prob = self.getQ() self.X = np.append(self.X, self.time) self.Y1 = np.append(self.Y1, prob[0]) self.Y2 = np.append(self.Y2, prob[1]) ########################## ## Process page request ########################## if page in self.CacheFrequecy: page_fault = False self.pageHitUpdate(page) else: ##################################################### ## Learning step: If there is a page fault in history ##################################################### pageevict, histpage_freq = None, 1 policyUsed = -1 if page in self.Hist1: pageevict = page histpage_freq = self.Hist1.getCount(page) self.Hist1.delete(page) policyUsed = 0 elif page in self.Hist2: pageevict = page histpage_freq = self.Hist2.getCount( page) ## Get the page frequency in history self.Hist2.delete(page) policyUsed = 1 if pageevict is not None: q = self.weightsUsed[pageevict] err = self.error_discount_rate**(self.time - self.evictionTime[pageevict]) reward = np.array([0, 0], dtype=np.float32) if policyUsed == 0: # LRU reward[1] = err if policyUsed == 1: reward[0] = err reward_hat = reward / q ################# ## Update Weights ################# if self.policyUsed[pageevict] != -1: self.W = self.W * np.exp(self.lamb * reward_hat / 2) self.W = self.W / np.sum(self.W) #################### ## Remove from Cache #################### if self.CacheARC.size() == self.N: ################ ## Choose Policy ################ if not self.learning: act = np.argmax(self.getQ()) else: act = self.chooseRandom() cacheevict, poly, pagefreq = self.updateCacheUsingPolicy( act, page, histpage_freq) self.policyUsed[cacheevict] = poly self.weightsUsed[cacheevict] = self.getQ() self.evictionTime[cacheevict] = self.time if not self.learning: self.policyUsed[cacheevict] = -1 ################### ## Evict to history ################### histevict = None if (poly == 0) or (poly == -1 and np.random.rand() < 0.5): if self.Hist1.size() == self.N: histevict = self.Hist1.getIthPage(0) self.Hist1.delete(histevict) assert self.Hist1.add(cacheevict), "Error adding to Hist1." self.Hist1.setCount(cacheevict, pagefreq) else: if self.Hist2.size() == self.N: histevict = self.Hist2.getIthPage(0) self.Hist2.delete(histevict) self.Hist2.add(cacheevict) self.Hist2.setCount(cacheevict, pagefreq) if histevict is not None: del self.evictionTime[histevict] del self.policyUsed[histevict] del self.weightsUsed[histevict] ## Delete page from Cache else: self.addToCache(page, pagefreq=histpage_freq) page_fault = True return page_fault def get_list_labels(self): return ['L']
class BANDIT_WITH_ARC(page_replacement_algorithm): def __init__(self, N): self.N = N self.Cache = Disk(N, name='Cache') self.Hist1 = Disk(N, name='Hist1') self.Hist2 = Disk(N, name='Hist2') self.Hist3 = Disk(N, name='Hist3') ## Config variables self.decayRate = 0.99 self.epsilon = 0.90 ## Learning rate self.lamb = 0.05 self.learning_phase = 2 * N self.error_discount_rate = (0.005)**(1.0 / N) ## State Variables self.learning = True self.policy = 0 self.accessedTime = {} self.frequency = {} self.accessedSinceInCache = {} self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} self.currentPolicy = np.random.randint(0, 3) self.time = 0 self.learning = True self.leaningPhaseCount = 1 self.W = np.array([1.0 / 3, 1.0 / 3, 1.0 / 3], dtype=np.float32) self.P = 0 self.currentQ = np.zeros(3) self.X = np.array([]) self.Y1 = np.array([]) self.Y2 = np.array([]) self.Y3 = np.array([]) def get_N(self): return self.N def visualize(self, plt): l1, = plt.plot(self.X, self.Y1, 'b-', label='W_lru') l2, = plt.plot(self.X, self.Y2, 'r-', label='W_lfu') l3, = plt.plot(self.X, self.Y3, 'g-', label='W_arc') plt.xlabel('time') plt.ylabel('Weight') plt.legend(handles=[l1, l2, l3]) def getArcCache(self): T1, T2 = [], [] for pg in self.Cache: if self.accessedSinceInCache[pg] == 1: T1.append(pg) else: T2.append(pg) return T1, T2 def getArcHist(self): B1, B2 = [], [] for pg in self.Hist3: if self.accessedSinceInCache[pg] == 1: B1.append(pg) else: B2.append(pg) return B1, B2 def getLru(self, L): lru = None for pg in L: if lru is None or self.accessedTime[ pg] < self.accessedSinceInCache[lru]: lru = pg return lru def __keyWithMinVal(self, d): v = list(d.values()) k = list(d.keys()) return k[v.index(min(v))] def getMinValueFromCache(self, values): minpage, first = -1, True for q in self.Cache: if first or values[q] < values[minpage]: minpage, first = q, False return minpage def selectEvictPage(self, policy): r = self.getMinValueFromCache(self.accessedTime) f = self.getMinValueFromCache(self.frequency) # if r == f : # return r,-1 if policy == 0: return r, 0 if policy == 1: return f, 1 def getQ(self): return (1 - self.lamb) * self.W + self.lamb * np.ones(3) / 3 def chooseRandom(self): q = self.getQ() r = np.random.rand() for i, p in enumerate(q): if r < p: return i return len(q) - 1 def updateWeight(self, cost): self.W = self.W * (1 - self.epsilon * cost) self.W = self.W / np.sum(self.W) def __replace(self, T1, T2, B1, B2, x): evict = None if len(T1) > 0 and (len(T1) > self.P or (x in B1 and len(B1) == self.P)): evict = self.getLru(T1) self.Cache.delete(evict) self.Hist3.add(evict) else: evict = self.getLru(T2) self.Cache.delete(evict) self.Hist3.add(evict) if evict is None: print('__replace debug') return evict ######################################################################################################################################## ####REQUEST############################################################################################################################# ######################################################################################################################################## def request(self, page): page_fault = False self.time = self.time + 1 ############################ ## Save data for training ## ############################ if self.time % self.learning_phase == 0: lastPolicy = self.currentPolicy if np.random.rand() < (0.5 - 0.5 / np.sqrt(self.leaningPhaseCount)): self.currentPolicy = np.argmax(self.getQ()) self.learning = False else: self.currentPolicy = self.chooseRandom() self.leaningPhaseCount += 1 self.learning = True self.currentQ = self.getQ() if self.currentPolicy == 2 and lastPolicy != 2: self.Hist3.clear() ## Visualization data prob = self.getQ() self.X = np.append(self.X, self.time) self.Y1 = np.append(self.Y1, prob[0]) self.Y2 = np.append(self.Y2, prob[1]) self.Y3 = np.append(self.Y3, prob[2]) ######################### ## Process page reques ## ######################### if page in self.Cache: page_fault = False else: #### HISTORY ######################################################################################################### pageevict = None policyUsed = -1 wasInArcHist = False if page in self.Hist1: pageevict = page policyUsed = 0 self.Hist1.delete(page) elif page in self.Hist2: pageevict = page policyUsed = 1 self.Hist2.delete(page) elif page in self.Hist3: pageevict = page policyUsed = 2 wasInArcHist = True B1, B2 = self.getArcHist() if page in B1: if len(B2) > len(B1): r = len(B2) / len(B1) else: r = 1 self.P = min(self.P + r, self.N) if page in B2: if len(B1) > len(B2): r = len(B1) / len(B2) else: r = 1 self.P = max(self.P - r, 0) self.Hist3.delete(page) if pageevict is not None: q = self.weightsUsed[pageevict] err = self.error_discount_rate**(self.time - self.evictionTime[pageevict]) reward = np.array([0, 0, 0], dtype=np.float32) if policyUsed == 0: reward[1] = reward[2] = err if policyUsed == 1: reward[0] = reward[2] = err if policyUsed == 2: reward[0] = reward[1] = err reward_hat = reward / q ## Update Weights if self.policyUsed[pageevict] != -1: self.W = self.W * np.exp(self.lamb * reward_hat / 3) self.W = self.W / np.sum(self.W) #### END HISTORY ###################################################################################################### ############################################################################################################# ## Remove from Cache if self.Cache.size() == self.N: histevict = -1 if self.currentPolicy == 0: cacheevict = self.getMinValueFromCache(self.accessedTime) self.Cache.delete(cacheevict) self.weightsUsed[cacheevict] = self.currentQ self.evictionTime[cacheevict] = self.time self.policyUsed[ cacheevict] = 0 if not self.learning else -1 if self.Hist1.size() == self.N: histevict = self.Hist1.getIthPage(0) self.Hist1.delete(histevict) self.Hist1.add(cacheevict) if self.currentPolicy == 1: cacheevict = self.getMinValueFromCache(self.frequency) self.Cache.delete(cacheevict) self.weightsUsed[cacheevict] = self.currentQ self.evictionTime[cacheevict] = self.time self.policyUsed[ cacheevict] = 1 if not self.learning else -1 if self.Hist2.size() == self.N: histevict = self.Hist2.getIthPage(0) self.Hist2.delete(histevict) self.Hist2.add(cacheevict) if self.currentPolicy == 2: T1, T2 = self.getArcCache() B1, B2 = self.getArcHist() cacheevict = None if wasInArcHist: cacheevict = self.__replace(T1, T2, B1, B2, page) else: if len(T1) + len(B1) == self.N: if len(T1) < self.N: histevict = self.getLru(B1) self.Hist3.delete(histevict) cacheevict = self.__replace( T1, T2, B1, B2, page) else: histevict = self.getLru(T1) self.Cache.delete(histevict) _T1, _T2 = self.getArcCache() _B1, _B2 = self.getArcHist() if len(_T1) + len(_B1) >= 50: print('debug: T1+B1 = ', len(_T1) + len(_B1), ' T1,B1 = ', len(_T1), len(_B1)) elif len(T1) + len(B1) < self.N: if len(T1) + len(T2) + len(B1) + len(B2) >= self.N: if len(T1) + len(T2) + len(B1) + len( B2) == 2 * self.N: histevict = self.getLru(B2) self.Hist3.delete(histevict) cacheevict = self.__replace( T1, T2, B1, B2, page) if cacheevict is not None: self.weightsUsed[cacheevict] = self.currentQ self.evictionTime[cacheevict] = self.time self.policyUsed[ cacheevict] = 2 if not self.learning else -1 else: print('cacheevict is None', len(T1) + len(B1), len(T1), len(B1), cacheevict) pass if histevict != -1: del self.evictionTime[histevict] del self.accessedTime[histevict] del self.frequency[histevict] del self.accessedSinceInCache[histevict] del self.policyUsed[histevict] del self.weightsUsed[histevict] if page not in self.frequency: self.frequency[page] = 0 if page not in self.accessedSinceInCache or not wasInArcHist: self.accessedSinceInCache[page] = 0 ## page - is new to cache self.Cache.add(page) page_fault = True for q in self.Cache: self.frequency[q] *= self.decayRate self.frequency[page] += 1 self.accessedTime[page] = self.time self.accessedSinceInCache[page] += 1 return page_fault def get_list_labels(self): return ['L']