def test(cfg, model): torch.cuda.empty_cache() dataset_name = cfg.DATASET.TEST model_dir = os.path.join(cfg.MODEL_DIR, cfg.MODEL.NAME) output_folder = os.path.join(model_dir, "inference", dataset_name) os.makedirs(output_folder, exist_ok=True) data_loader_val = make_data_loader(cfg, is_train=False) inference( cfg, model, data_loader_val, device=cfg.MODEL.DEVICE, output_folder=output_folder, )
def main(): parser = argparse.ArgumentParser(description="ReID Baseline Inference") parser.add_argument( "--config_file", default="/home/lab3/bi/0716/Veri/ai_city/configs/submit.yml", help="path to config file", type=str) parser.add_argument("opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 if args.config_file != "": cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir and not os.path.exists(output_dir): mkdir(output_dir) logger = setup_logger("reid_baseline", output_dir, 0) logger.info("Using {} GPUS".format(num_gpus)) logger.info(args) if args.config_file != "": logger.info("Loaded configuration file {}".format(args.config_file)) # with open(args.config_file, 'r') as cf: # config_str = "\n" + cf.read() # logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) if cfg.MODEL.DEVICE == "cuda": os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID cudnn.benchmark = True train_loader, val_loader, num_query, num_classes, dataset = make_data_loader( cfg) model = build_model(cfg, num_classes) model.load_param(cfg.TEST.WEIGHT) inference(cfg, model, val_loader, num_query, dataset)
def main(): parser = argparse.ArgumentParser(description="Dense Correspondence") parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # cfg.freeze() model = build_matching_model(cfg) model.to(cfg.MODEL.DEVICE) model = torch.nn.DataParallel(model) model_dir = os.path.join(cfg.MODEL_DIR, cfg.MODEL.NAME) checkpointer = Checkpointer(cfg, model, save_dir=model_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) dataset_name = cfg.DATASET.TEST output_folder = os.path.join(model_dir, "inference", dataset_name) os.makedirs(output_folder, exist_ok=True) data_loader_val = make_data_loader(cfg, is_train=False) inference( cfg, model, data_loader_val, device=cfg.MODEL.DEVICE, output_folder=output_folder, )
def main(): parser = argparse.ArgumentParser(description="ReID Baseline Inference") parser.add_argument( "--config_file", default="./configs/debug.yml", help="path to config file", type=str ) parser.add_argument("opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 if args.config_file != "": cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir and not os.path.exists(output_dir): mkdir(output_dir) logger = setup_logger("reid_baseline", output_dir, 0) logger.info("Using {} GPUS".format(num_gpus)) logger.info(args) if args.config_file != "": logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, 'r') as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) if cfg.MODEL.DEVICE == "cuda": os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID cudnn.benchmark = True train_loader, val_loader, num_query, num_classes, dataset = make_data_loader(cfg) model = build_model(cfg, num_classes) model.load_param(cfg.TEST.WEIGHT) indices_np = inference(cfg, model, val_loader, num_query, dataset) ## read meta information dataset = AICity20(cfg.DATASETS.ROOT_DIR) # write_result(indices_np, os.path.dirname(cfg.TEST.WEIGHT), topk=100) write_result_with_track(indices_np, os.path.dirname(cfg.TEST.WEIGHT), dataset.test_tracks,'329')