コード例 #1
0
ファイル: radist.py プロジェクト: sjdv1982/attract
def func_collect(eulers, positions, templates):
    nbodies = len(templates)
    assert eulers.shape[1] == positions.shape[1] == nbodies
    nstruc = eulers.shape[0]
    assert eulers.shape[0] == positions.shape[0]

    e = TVArray("e", eulers)
    p = TVArray("p", positions)
    eT = TVArray("eT")
    pT = TVArray("pT")
    g_e = TVArray("g_e", gpu=True)
    g_p = TVArray("g_p", gpu=True)
    g_rotmats = TVArray("g_rotmats", gpu=True)
    g_coors = []
    o_coors = []
    g_templates = []
    i_templates = TVArrayList("i_templates", templates)
    for b in range(nbodies):
        g_coors.append(TVArray("g_coors[%d]" % b, gpu=True))
        o_coors.append(TVArray("o_coors[%d]" % b))
        g_templates.append(TVArray("g_templates[%d]" % b, gpu=True))
        copy(i_templates[b]) > g_templates[b]
    transpose(e, (1, 0, 2)) > eT
    transpose(p, (1, 0, 2)) > pT
    copy(eT) > g_e
    copy(pT) > g_p
    g_ee = g_e.rsplit()
    g_pp = g_p.rsplit()

    for b in range(nbodies):
        euler2rotmat(g_ee[b]) > g_rotmats
        collect(g_pp[b], g_rotmats, g_templates[b]) > g_coors[b]
        copy(g_coors[b]) > o_coors[b]

    return tuple([o for o in o_coors])
コード例 #2
0
ファイル: radist.py プロジェクト: sjdv1982/attract
def func_radist(eulers, positions, templates, saxs_factors, binsize, nbins):

    nbodies = len(templates)
    assert eulers.shape[1] == positions.shape[1] == nbodies
    nstruc = eulers.shape[0]
    assert eulers.shape[0] == positions.shape[0]

    o_radist = TVArray("radist", shape=(nstruc, nbins), dtype="float32")

    e = TVArray("e", eulers)
    p = TVArray("p", positions)
    eT = TVArray("eT")
    pT = TVArray("pT")
    g_e = TVArray("g_e", gpu=True)
    g_p = TVArray("g_p", gpu=True)
    g_rotmats = TVArray("g_rotmats", gpu=True)
    g_coors = []
    g_templates = []
    i_templates = TVArrayList("i_templates", templates)
    g_saxs_factors = []
    i_saxs_factors = TVArrayList("i_saxs_factors", saxs_factors)
    for b in range(nbodies):
        g_coors.append(TVArray("g_coors[%d]" % b, gpu=True))
        g_templates.append(TVArray("g_templates[%d]" % b, gpu=True))
        copy(i_templates[b]) > g_templates[b]
        g_saxs_factors.append(TVArray("g_saxs_factors[%d]" % b, gpu=True))
        copy(i_saxs_factors[b]) > g_saxs_factors[b]
    transpose(e, (1, 0, 2)) > eT
    transpose(p, (1, 0, 2)) > pT
    copy(eT) > g_e
    copy(pT) > g_p
    g_ee = g_e.rsplit()
    g_pp = g_p.rsplit()

    for b in range(nbodies):
        euler2rotmat(g_ee[b]) > g_rotmats
        collect(g_pp[b], g_rotmats, g_templates[b]) > g_coors[b]

    coors_chunks = [g.rchunks(CHUNKSIZE) for g in g_coors]
    o_radist_chunks = o_radist.wchunks(CHUNKSIZE)
    g_radist = TVArray("g_radist",
                       gpu=True,
                       shape=(CHUNKSIZE, nbins),
                       dtype="float32")
    for i in range(len(o_radist_chunks)):
        g_radist.shape = (coors_chunks[b][i].shape[0], nbins)
        fill(0) > g_radist
        for b in range(nbodies):
            for bb in range(b + 1, nbodies):
                calc_radist(coors_chunks[b][i], g_saxs_factors[b],
                            coors_chunks[bb][i], g_saxs_factors[bb], binsize,
                            nbins) >> g_radist
        copy(g_radist) > o_radist_chunks[i]
    o_radist.join()
    return o_radist
コード例 #3
0
def gvm(refe, eulers, positions, templates, gridshape, origin, gridspacing,
        chunksize):
    chunklen = min(chunksize, len(eulers))

    nbodies = len(templates)
    assert eulers.shape[1] == positions.shape[1] == nbodies
    nstruc = eulers.shape[0]
    assert eulers.shape[0] == positions.shape[0]

    e = TVArray("e", eulers)
    p = TVArray("p", positions)
    eT = TVArray("eT")
    pT = TVArray("pT")
    g_e = TVArray("g_e", gpu=True)
    g_p = TVArray("g_p", gpu=True)
    g_rotmats = TVArray("g_rotmats", gpu=True)
    g_coors = []
    g_templates = []
    i_templates = TVArrayList("i_templates", templates)
    i_refe = TVArrayList("i_refe", refe)
    for b in range(nbodies):
        g_coors.append(TVArray("g_coors[%d]" % b, gpu=True))
        g_templates.append(TVArray("g_templates[%d]" % b, gpu=True))
        copy(i_templates[b]) > g_templates[b]
    transpose(e, (1, 0, 2)) > eT
    transpose(p, (1, 0, 2)) > pT
    copy(eT) > g_e
    copy(pT) > g_p
    g_ee = g_e.rsplit()
    g_pp = g_p.rsplit()

    for b in range(nbodies):
        euler2rotmat(g_ee[b]) > g_rotmats
        collect(g_pp[b], g_rotmats, g_templates[b]) > g_coors[b]

    chunk_coors = []
    for b in range(nbodies):
        chunk_coors.append(g_coors[b].rchunks(chunklen))

    maps = TVArray("maps",
                   gpu=True,
                   dtype="float32",
                   shape=(chunklen, ) + tuple(gridshape))
    g_refe = []
    for n in range(3):
        assert gridshape[0] == refe[n].shape[0] + 2
        assert gridshape[1] == refe[n].shape[1] + 2
        assert gridshape[2] == refe[n].shape[2] + 2
        g_refe.append(TVArray("g_refe[%d]" % n, gpu=True))
        copy(i_refe[n]) > g_refe[n]
    g_sumx, g_sumxx, g_sumxy = [], [], []
    sumx, sumxx, sumxy = [], [], []
    chunk_sumx, chunk_sumxx, chunk_sumxy = [], [], []
    for n in range(3):
        g_sumx.append(
            TVArray("g_sumx[%d]" % n,
                    gpu=True,
                    shape=(chunklen, ),
                    dtype="float32"))
        g_sumxx.append(
            TVArray("g_sumxx[%d]" % n,
                    gpu=True,
                    shape=(chunklen, ),
                    dtype="float32"))
        g_sumxy.append(
            TVArray("g_sumxy[%d]" % n,
                    gpu=True,
                    shape=(chunklen, ),
                    dtype="float32"))
        sumx.append(
            TVArray("sumx[%d]" % n, shape=(len(eulers), ), dtype="float32"))
        sumxx.append(
            TVArray("sumxx[%d]" % n, shape=(len(eulers), ), dtype="float32"))
        sumxy.append(
            TVArray("sumxy[%d]" % n, shape=(len(eulers), ), dtype="float32"))
        chunk_sumx.append(sumx[n].wchunks(chunksize))
        chunk_sumxx.append(sumxx[n].wchunks(chunksize))
        chunk_sumxy.append(sumxy[n].wchunks(chunksize))

    for i in range(len(chunk_sumx[0])):
        fill(0) > maps
        for b in range(nbodies):
            gridify(chunk_coors[b][i], origin, gridspacing) >> maps
        gvm_x(maps, g_refe[0]) > (g_sumx[0], g_sumxx[0], g_sumxy[0])
        gvm_y(maps, g_refe[1]) > (g_sumx[1], g_sumxx[1], g_sumxy[1])
        gvm_z(maps, g_refe[2]) > (g_sumx[2], g_sumxx[2], g_sumxy[2])
        for n in range(3):
            copy(g_sumx[n]) > chunk_sumx[n][i]
            copy(g_sumxx[n]) > chunk_sumxx[n][i]
            copy(g_sumxy[n]) > chunk_sumxy[n][i]
    for n in range(3):
        sumx[n].join()
        sumxx[n].join()
        sumxy[n].join()
    return sumx[0], sumx[1], sumx[2], sumxx[0], sumxx[1], sumxx[2], sumxy[
        0], sumxy[1], sumxy[2]
コード例 #4
0
def overlap(eulers, positions, templates, weights, origin, gridspacing,
            reps_emdata, hash_emdata, coor_chunksize, grid_chunksize,
            maxdensity):
    """
  each element in reps_emdata: emdata multiplied by -maxdensity, replicated grid_chunksize times, and uploaded to the GPU
  """
    assert grid_chunksize <= coor_chunksize
    nbodies = len(templates)
    assert eulers.shape[1] == positions.shape[1] == nbodies
    nstruc = eulers.shape[0]
    assert eulers.shape[0] == positions.shape[0]
    assert len(reps_emdata) == grid_chunk_parallel
    for rep_emdata in reps_emdata:
        assert len(rep_emdata.shape) == 4
        assert rep_emdata.shape[0] == grid_chunksize
        assert rep_emdata.shape[1] == rep_emdata.shape[2] == rep_emdata.shape[3]

    #g_rep_emdata = TVArray("g_rep_emdata", rep_emdata, gpu=True, hash=hash_emdata)
    g_reps_emdata = TVArrayList("g_reps_emdata",
                                reps_emdata,
                                gpu=True,
                                hashes=[hash_emdata] * grid_chunk_parallel)
    overlaps = TVArray("overlaps", dtype="float32", shape=(nstruc, ))

    e = TVArray("e", eulers)
    p = TVArray("p", positions)
    i_templates = TVArrayList("i_templates", templates)
    i_weights = TVArrayList("i_weights", weights)
    assert len(templates) == len(weights)
    g_grids = []
    for k in range(grid_chunk_parallel):
        g_grids0 = TVArray("g_grids{%d}" % k,
                           shape=reps_emdata[k].shape,
                           dtype="float32",
                           gpu=True)
        g_grids.append(g_grids0)

    g_templates = []
    g_weights = []
    for t, w in zip(i_templates, i_weights):
        tt = TVArray("g_" + t.name()[0], gpu=True)
        copy(t) > tt
        g_templates.append(tt)
        ww = TVArray("g_" + w.name()[0], gpu=True)
        copy(w) > ww
        g_weights.append(ww)

    e_chunk_T = TVArray("e_chunk_T")
    p_chunk_T = TVArray("p_chunk_T")
    g_e_chunk = TVArray("g_e_chunk", gpu=True)
    g_p_chunk = TVArray("g_p_chunk", gpu=True)
    g_rotmats = TVArray("g_rotmats", gpu=True)

    g_coors = []
    for n in range(nbodies):
        a = TVArray("g_coors{%d}" % n, gpu=True)
        g_coors.append(a)

    e_chunks = e.rchunks(coor_chunksize)
    p_chunks = p.rchunks(coor_chunksize)
    overlaps_chunks = overlaps.wchunks(coor_chunksize)
    overlaps_chunk = TVArray("overlaps_chunk", dtype="float32")

    overlaps_chunk2 = []
    for k in range(grid_chunk_parallel):
        overlaps_chunk2_0 = TVArray("overlaps_chunk2{%d}" % k, dtype="float32")
        overlaps_chunk2.append(overlaps_chunk2_0)
        #overlaps_chunk2_0.cache()

    ov, g_ov = [], []
    for k in range(grid_chunk_parallel):
        ov0 = TVArray("ov{%d}" % k)
        g_ov0 = TVArray("g_ov{%d}" % k, gpu=True)
        ov.append(ov0)
        g_ov.append(g_ov0)

    for i in range(len(e_chunks)):
        print >> sys.stderr, "CHUNK", i + 1
        e_chunk, p_chunk = e_chunks[i], p_chunks[i]
        transpose(e_chunk, (1, 0, 2)) > e_chunk_T
        transpose(p_chunk, (1, 0, 2)) > p_chunk_T
        copy(e_chunk_T) > g_e_chunk
        copy(p_chunk_T) > g_p_chunk

        g_ee = g_e_chunk.rsplit()
        g_pp = g_p_chunk.rsplit()

        for n in range(nbodies):
            euler2rotmat(g_ee[n]) > g_rotmats
            collect(g_pp[n], g_rotmats, g_templates[n]) > g_coors[n]
        g_coors_chunks = [a.rchunks(grid_chunksize) for a in g_coors]

        g_e_chunk = g_e_chunk.join()
        g_p_chunk = g_p_chunk.join()

        #"overlaps_chunk" represents overlaps::i. since we cannot shard a shard

        overlaps_chunk._current().shape = (len(e_chunk), )
        overlaps_chunks2 = overlaps_chunk.wchunks(grid_chunksize)

        for j in range(len(g_coors_chunks[n])):
            k = j % grid_chunk_parallel
            overlaps_chunk2[k]._current().shape = overlaps_chunks2[j].shape
            copy(g_reps_emdata[k]) > g_grids[k]
            for n in range(nbodies):
                atomdensitymask1(g_coors_chunks[n][j], g_weights[n], origin,
                                 gridspacing) >> g_grids[k]

            fill(0) > overlaps_chunk2[k]
            for n in range(nbodies):
                atomdensitymask2(g_coors_chunks[n][j], g_grids[k], origin,
                                 gridspacing, maxdensity) > g_ov[k]
                copy(g_ov[k]) > ov[k]
                nptask(ov[k], ".sum(axis=1)") >> overlaps_chunk2[k]

            copy(overlaps_chunk2[k]) > overlaps_chunks2[
                j]  #cannot accumulate a shard

        g_coors = [a.join() for a in g_coors]
        overlaps_chunk = overlaps_chunk.join()
        copy(overlaps_chunk) > overlaps_chunks[i]  #cannot shard a shard

    overlaps = overlaps.join()
    #overlaps.cache()
    return overlaps