コード例 #1
0
    def reload_images(self, group_method, img_list):
        """
        Reloads the image list by replacing the comparative values with those
        that the chosen grouping method expects.
        :param group_method: str name of the grouping method that will be used.
        :param img_list: image list that has been sorted by one of the sort
        methods.
        :return: img_list but with the comparative values that the chosen
        grouping method expects.
        """
        input_dir = self.args.input_dir
        print("Preparing to group...")
        if group_method == 'group_blur':
            temp_list = [[x, self.estimate_blur(cv2.imread(x))] for x in tqdm(
                self.find_images(input_dir), desc="Reloading", file=sys.stdout)
                         ]
        elif group_method == 'group_face':
            temp_list = [[
                x, face_recognition.face_encodings(cv2.imread(x))
            ] for x in tqdm(
                self.find_images(input_dir), desc="Reloading", file=sys.stdout)
                         ]
        elif group_method == 'group_face_cnn':
            temp_list = []
            for x in tqdm(self.find_images(input_dir),
                          desc="Reloading",
                          file=sys.stdout):
                d = face_alignment.Extract(
                    cv2.imread(x),
                    'dlib-cnn',
                    True,
                    input_is_predetected_face=True).landmarks
                temp_list.append([
                    x,
                    np.array(d[0][1]) if len(d) > 0 else np.zeros((68, 2))
                ])
        elif group_method == 'group_face_yaw':
            temp_list = []
            for x in tqdm(self.find_images(input_dir),
                          desc="Reloading",
                          file=sys.stdout):
                d = face_alignment.Extract(
                    cv2.imread(x),
                    'dlib-cnn',
                    True,
                    input_is_predetected_face=True).landmarks
                temp_list.append(
                    [x, self.calc_landmarks_face_yaw(np.array(d[0][1]))])
        elif group_method == 'group_hist':
            temp_list = [[
                x,
                cv2.calcHist([cv2.imread(x)], [0], None, [256], [0, 256])
            ] for x in tqdm(
                self.find_images(input_dir), desc="Reloading", file=sys.stdout)
                         ]
        else:
            raise ValueError("{} group_method not found.".format(group_method))

        return self.splice_lists(img_list, temp_list)
コード例 #2
0
def detect_faces(frame, detector, verbose, rotation=0, mtcnn_kwargs=None):
    """ Detect faces and draw landmarks in an image """
    face_detect = face_alignment.Extract(frame, detector, mtcnn_kwargs,
                                         verbose)
    for face in face_detect.landmarks:
        ax_x, ax_y = face[0][0], face[0][1]
        right, bottom = face[0][2], face[0][3]
        landmarks = face[1]

        yield DetectedFace(frame[ax_y:bottom, ax_x:right],
                           rotation,
                           ax_x,
                           right - ax_x,
                           ax_y,
                           bottom - ax_y,
                           landmarksXY=landmarks)
コード例 #3
0
    def sort_face_yaw(self):
        input_dir = self.args.input_dir

        img_list = []
        for x in tqdm(self.find_images(input_dir),
                      desc="Loading",
                      file=sys.stdout):
            d = face_alignment.Extract(
                cv2.imread(x),
                'dlib-cnn',
                True,
                input_is_predetected_face=True).landmarks
            img_list.append(
                [x, self.calc_landmarks_face_yaw(np.array(d[0][1]))])

        print("Sorting by face-yaw...")
        img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

        return img_list
コード例 #4
0
ファイル: faces_detect.py プロジェクト: jinny960812/git_test
def detect_faces(frame, detector, verbose, rotation=0, mtcnn_kwargs=None):
    """ Detect faces and draw landmarks in an image """
    face_detect = face_alignment.Extract(frame, detector, mtcnn_kwargs,
                                         verbose)
    # --- Changes ---
    # If we have a center, take the face that is closest to previous center
    if detect_faces.prev_center is None:
        print('WARNING: Static variable in detect_faces, only extract one '
              'sequence per faceswap.py call')
        # Find biggest face by looking at y bounding box size, 0 is biggest
        detect_landmarks = face_detect.landmarks
        detect_landmarks = sorted(detect_landmarks,
                                  key=lambda x: x[0][1] - x[0][3])
        face_detect.landmarks = [detect_landmarks[0]]
    else:
        closest = float('inf')
        closest_face_idx = -1
        closest_center = None
        for i, landmark in enumerate(face_detect.landmarks):
            center = compute_center(landmark)
            length = np.linalg.norm(
                np.array(center) - np.array(detect_faces.prev_center))
            if length < closest:
                closest = length
                closest_face_idx = i
                closest_center = center
        detect_faces.prev_center = closest_center
        face_detect.landmarks = [face_detect.landmarks[closest_face_idx]]
    detect_faces.prev_center = compute_center(face_detect.landmarks[0])
    # --- Changes ---

    for face in face_detect.landmarks:
        ax_x, ax_y = face[0][0], face[0][1]
        right, bottom = face[0][2], face[0][3]
        landmarks = face[1]

        yield DetectedFace(frame[ax_y:bottom, ax_x:right],
                           rotation,
                           ax_x,
                           right - ax_x,
                           ax_y,
                           bottom - ax_y,
                           landmarksXY=landmarks)
コード例 #5
0
ファイル: sort.py プロジェクト: silade/faceswap-1
    def sort_face_yaw(self):
        """ Sort by yaw of face """
        input_dir = self.args.input_dir

        img_list = []
        for img in tqdm(self.find_images(input_dir),
                        desc="Loading",
                        file=sys.stdout):
            landmarks = face_alignment.Extract(
                input_image_bgr=cv2.imread(img),
                detector='dlib-cnn',
                verbose=True,
                input_is_predetected_face=True).landmarks
            img_list.append(
                [img, self.calc_landmarks_face_yaw(np.array(landmarks[0][1]))])

        print("Sorting by face-yaw...")
        img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

        return img_list
コード例 #6
0
ファイル: sort.py プロジェクト: jinny960812/git_test
    def sort_face_cnn_dissim(self):
        """ Sort by dlib CNN dissimilarity """
        input_dir = self.args.input_dir

        print("Sorting by face-cnn dissimilarity...")

        img_list = []
        for img in tqdm(self.find_images(input_dir),
                        desc="Loading",
                        file=sys.stdout):
            landmarks = face_alignment.Extract(
                input_image_bgr=cv2.imread(img),
                detector='dlib-cnn',
                verbose=True,
                input_is_predetected_face=True).landmarks
            img_list.append([
                img,
                np.array(landmarks[0][1]) if landmarks else np.zeros((68, 2)),
                0
            ])

        img_list_len = len(img_list)
        for i in tqdm(range(0, img_list_len - 1),
                      desc="Sorting",
                      file=sys.stdout):
            score_total = 0
            for j in range(i + 1, len(img_list)):
                if i == j:
                    continue
                fl1 = img_list[i][1]
                fl2 = img_list[j][1]
                score_total += np.sum(np.absolute((fl2 - fl1).flatten()))

            img_list[i][2] = score_total

        print("Sorting...")
        img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)

        return img_list
コード例 #7
0
ファイル: sort.py プロジェクト: silade/faceswap-1
    def sort_face_cnn(self):
        """ Sort by dlib CNN similarity """
        input_dir = self.args.input_dir

        print("Sorting by face-cnn similarity...")

        img_list = []
        for img in tqdm(self.find_images(input_dir),
                        desc="Loading",
                        file=sys.stdout):
            landmarks = face_alignment.Extract(
                input_image_bgr=cv2.imread(img),
                detector='dlib-cnn',
                verbose=True,
                input_is_predetected_face=True).landmarks
            img_list.append([img, np.array(landmarks[0][1])
                             if landmarks
                             else np.zeros((68, 2))])

        img_list_len = len(img_list)
        for i in tqdm(range(0, img_list_len - 1),
                      desc="Sorting",
                      file=sys.stdout):
            min_score = float("inf")
            j_min_score = i + 1
            for j in range(i + 1, len(img_list)):
                fl1 = img_list[i][1]
                fl2 = img_list[j][1]
                score = np.sum(np.absolute((fl2 - fl1).flatten()))

                if score < min_score:
                    min_score = score
                    j_min_score = j
            (img_list[i + 1],
             img_list[j_min_score]) = (img_list[j_min_score],
                                       img_list[i + 1])
        return img_list
コード例 #8
0
    def sort_face_cnn(self):

        input_dir = self.args.input_dir

        print("Sorting by face-cnn similarity...")

        img_list = []
        for x in tqdm(self.find_images(input_dir),
                      desc="Loading",
                      file=sys.stdout):
            d = face_alignment.Extract(
                cv2.imread(x),
                'dlib-cnn',
                True,
                input_is_predetected_face=True).landmarks
            img_list.append(
                [x, np.array(d[0][1]) if len(d) > 0 else np.zeros((68, 2))])

        img_list_len = len(img_list)
        for i in tqdm(range(0, img_list_len - 1),
                      desc="Sorting",
                      file=sys.stdout):
            min_score = float("inf")
            j_min_score = i + 1
            for j in range(i + 1, len(img_list)):
                fl1 = img_list[i][1]
                fl2 = img_list[j][1]
                score = np.sum(np.absolute((fl2 - fl1).flatten()))

                if score < min_score:
                    min_score = score
                    j_min_score = j
            img_list[i + 1] = img_list[j_min_score]
            img_list[j_min_score] = img_list[i + 1]

        return img_list