def get_gal_pa(subject_id):
    try:
        p = Pipeline.load('lib/pipelines/{}.json'.format(subject_id))
    except FileNotFoundError:
        drawn_arms = gu.get_drawn_arms(subject_id, gu.classifications)
        gal, angle = gu.get_galaxy_and_angle(subject_id)
        pic_array, deprojected_image = gu.get_image(gal, subject_id, angle)
        p = Pipeline(drawn_arms,
                     phi=angle,
                     ba=gal['PETRO_BA90'],
                     image_size=pic_array.shape[0])
    arms = (Arm.load(os.path.join('lib/spiral_arms', f))
            for f in os.listdir('lib/spiral_arms')
            if re.match('^{}-[0-9]+.pickle$'.format(subject_id), f))
    arms = [arm for arm in arms if not arm.FLAGGED_AS_BAD]

    pa = np.zeros(len(arms))
    sigma_pa = np.zeros(pa.shape)
    length = np.zeros(pa.shape)
    for i, arm in enumerate(arms):
        pa[i] = arm.pa
        length[i] = arm.length
        sigma_pa[i] = arm.sigma_pa
    if len(arms) == 0:
        return (np.nan, np.nan,
                np.stack((np.tile(subject_id, len(pa)), pa, sigma_pa, length),
                         axis=1))
    combined_pa = (pa * length).sum() / length.sum()
    combined_sigma_pa = np.sqrt((length**2 * sigma_pa**2).sum()) / length.sum()
    return (
        combined_pa,
        combined_sigma_pa,
        np.stack((np.tile(subject_id, len(pa)), pa, sigma_pa, length), axis=1),
    )
コード例 #2
0
def get_log_spirals(subject_id,
                    gal=None,
                    angle=None,
                    pic_array=None,
                    bar_length=0):
    drawn_arms = gu.get_drawn_arms(subject_id, gu.classifications)
    if gal is None or angle is None:
        gal, angle = gu.get_galaxy_and_angle(subject_id)
    if pic_array is None:
        pic_array, deprojected_image = gu.get_image(gal, subject_id, angle)

    path_to_subject = './lib/distances/subject-{}.npy'.format(subject_id)

    distances = gu.get_distances(subject_id)
    if distances is None or distances.shape[0] != len(
            drawn_arms) or not os.path.exists(path_to_subject):
        # print('\t- Calculating distances')
        distances = metric.calculate_distance_matrix(drawn_arms)
        np.save('./lib/distances/subject-{}.npy'.format(subject_id), distances)

    p = Pipeline(drawn_arms,
                 phi=angle,
                 ba=gal['PETRO_BA90'],
                 image_size=pic_array.shape[0],
                 distances=distances)

    arms = p.get_arms(clean_points=True, bar_length=bar_length)
    # print('Identified {} spiral arms'.format(len(arms)))
    return [arm.reprojected_log_spiral for arm in arms]
コード例 #3
0
def make_arm_plots():
    outfile = 'lib/duplicate_comb_spirals'
    bar = Bar('Plotting arms',
              max=len(dr8ids), suffix='%(percent).1f%% - %(eta)ds')
    arm_loc = 'lib/duplicate_spiral_arms'
    for i in range(len(dr8ids)):
        original_id = ss_ids[i]
        gal, angle = gu.get_galaxy_and_angle(original_id)
        pic_array, _ = gu.get_image(gal, original_id, angle)
        arms = [
            Arm.load(os.path.join(arm_loc, f))
            for f in os.listdir(arm_loc)
            if re.match('^{}-[0-9]+.pickle$'.format(dr8ids[i]), f)
        ]
        plt.figure(figsize=(8, 8))
        plt.imshow(pic_array, cmap='gray')
        for i, arm in enumerate(arms):
            plt.plot(
                *arm.reprojected_log_spiral.T,
                c=('C2' if not arm.FLAGGED_AS_BAD else 'C1')
            )
        plt.savefig(os.path.join(outfile, '{}.png'.format(original_id)))
        plt.close()
        bar.next()
    bar.finish()
コード例 #4
0
def get_best_classification(subject_id, should_plot=False, should_save=False):
    # grab all the required metadata for this galaxy
    psf = gu.get_psf(subject_id)
    diff_data = gu.get_image_data(subject_id)
    pixel_mask = 1 - np.array(diff_data['mask'])[::-1]
    galaxy_data = np.array(diff_data['imageData'])[::-1]
    size_diff = diff_data['width'] / diff_data['imageWidth']

    def _lf(rendered_model, y=galaxy_data):
        Y = rg.convolve2d(rendered_model, psf, mode='same',
                          boundary='symm') * pixel_mask
        return mean_squared_error(Y.flatten(),
                                  0.8 * (y * pixel_mask).flatten())

    classifications = gu.classifications.query(
        'subject_ids == {}'.format(subject_id))
    annotations = classifications['annotations'].apply(json.loads)
    models = annotations.apply(pa.parse_annotation, size_diff=size_diff)
    rendered_models = models.apply(rg.calculate_model,
                                   args=(diff_data['width'], ))
    scores = rendered_models.apply(_lf)
    best_index = scores.idxmin()
    best_cls = classifications.loc[best_index]
    best_model = models.loc[best_index]
    best_rendered_model = rendered_models.loc[best_index]

    if should_plot:
        gal, angle = gu.get_galaxy_and_angle(subject_id)
        pic_array, deprojected_image = gu.get_image(gal, subject_id, angle)
        # arcseconds per pixel for zooniverse image
        pix_size = pic_array.shape[0] / (gal['PETRO_THETA'].iloc[0] * 4)
        # arcseconds per pixel for galaxy data
        pix_size2 = galaxy_data.shape[0] / (gal['PETRO_THETA'].iloc[0] * 4)
        imshow_kwargs = {
            'cmap':
            'gray_r',
            'origin':
            'lower',
            'extent': (
                # left of image in arcseconds from centre
                -pic_array.shape[0] / 2 / pix_size,
                pic_array.shape[0] / 2 / pix_size,  # right...
                -pic_array.shape[1] / 2 / pix_size,  # bottom...
                pic_array.shape[1] / 2 / pix_size  # top...
            ),
        }
        tc, tp = make_transforms(galaxy_data, pix_size2)
        plot_model(best_rendered_model, galaxy_data, psf, best_model,
                   pixel_mask, imshow_kwargs, tc, tp, best_cls)
        plt.savefig('best_residual/{}.pdf'.format(subject_id))
        plt.close()
    if should_save:
        with open('best_annotation/{}.json'.format(subject_id), 'w') as f:
            f.write(json.dumps(pa.make_json(best_model)))

    return best_cls
コード例 #5
0
def get_optimized_model(subject_id, mode='best'):
    gal, angle = gu.get_galaxy_and_angle(subject_id)
    sep = coords.separation(
        SkyCoord(ra=gal['RA'] * u.degree, dec=gal['DEC'] * u.degree))
    idxmin_sep = np.argmin(sep)
    if not sep[idxmin_sep] < 1 * u.arcsec:
        return None
    pic_array, deprojected_image = gu.get_image(gal, subject_id, angle)
    psf = gu.get_psf(subject_id)
    diff_data = gu.get_image_data(subject_id)
    pixel_mask = 1 - np.array(diff_data['mask'])[::-1]
    galaxy_data = np.array(diff_data['imageData'])[::-1]
    size_diff = diff_data['width'] / diff_data['imageWidth']
    # arcseconds per pixel for zooniverse image
    pix_size = pic_array.shape[0] / (gal['PETRO_THETA'].iloc[0] * 4)
    # arcseconds per pixel for galaxy data
    pix_size2 = galaxy_data.shape[0] / (gal['PETRO_THETA'].iloc[0] * 4)
    try:
        if mode == 'agg':
            agg_fname = os.path.join('..', 'component-clustering',
                                     'cluster-output',
                                     '{}.json'.format(subject_id))
            with open(agg_fname) as f:
                model = pa.parse_aggregate_model(json.load(f),
                                                 size_diff=size_diff)
        elif mode == 'best':
            c = gu.classifications.query('classification_id == {}'.format(
                best_cls[str(subject_id)])).iloc[0]
            a = json.loads(c['annotations'])
            model = pa.parse_annotation(a, size_diff=size_diff)
        else:
            raise ValueError('Invalid value for "mode"')
    except KeyError:
        print('\nFailed: {}'.format(subject_id))
        return None

    no_spiral_model = deepcopy(model)
    no_spiral_model['spiral'] = []

    mf_nosp = ModelFitter(no_spiral_model, galaxy_data, psf, pixel_mask)
    md_nosp = mf_nosp.model
    try:
        new_nosp_model, res = mf_nosp.fit(options={'maxiter': 100})
    except ValueError:
        print('\nCould not fit: {}'.format(subject_id))
        return None
    m0_nosp = Model(no_spiral_model, galaxy_data, psf, pixel_mask)
    m1_nosp = Model(new_nosp_model, galaxy_data, psf, pixel_mask)
    return (subject_id, m0_nosp, m1_nosp, sd.iloc[idxmin_sep], pix_size2)
コード例 #6
0
        s = clf.score(
            X_test[:, :-1],
            t_test,
            sample_weight=point_weights[test]
        )
        params.append(clf.coef_)
        score += s / n_splits
    return score, params


if __name__ == '__main__':
    chosenId = 21097008
    # chosenId = 21686558
    gal, angle = gu.get_galaxy_and_angle(chosenId)
    pic_array, deprojected_image = gu.get_image(
        gal, chosenId, angle
    )

    drawn_arms = gu.get_drawn_arms(chosenId, gu.classifications)

    galaxy_object = GalaxySpirals(
        drawn_arms,
        ba=gal['SERSIC_BA'].iloc[0],
        phi=-angle
    )
    try:
        distances
    except NameError:
        distances = galaxy_object.calculate_distances()

    db = galaxy_object.cluster_lines(distances)
コード例 #7
0
    plt.title('Combined galaxy')
    plt.imshow(pic_array, origin='lower', cmap='gray_r')
    ax = plt.gca()
    for p in patches:
        ax.add_patch(p)
    plt.axis('off')
    if outfile is not None:
        plt.savefig(outfile)


if __name__ == "__main__":
    sid_list = sorted(np.loadtxt('lib/subject-id-list.csv', dtype='u8'))
    to_iter = sid_list
    for subject_id in tqdm(to_iter):
        gal, angle = gu.get_galaxy_and_angle(subject_id)
        pic_array, deprojected_image = gu.get_image(gal, subject_id, angle)
        pix_size = pic_array.shape[0] / (gal['PETRO_THETA'].iloc[0] * 4
                                         )  # pixels per arcsecond

        disk_res, bulge_res, bar_res = cluster_components(subject_id)

        spirals = get_log_spirals(subject_id,
                                  gal=gal,
                                  angle=angle,
                                  pic_array=pic_array,
                                  bar_length=10)
        xtick_labels = np.linspace(-100, 100, 11).astype(int)
        xtick_positions = xtick_labels * pix_size + pic_array.shape[0] / 2
        xtick_mask = (xtick_positions > 0) & (xtick_positions <
                                              pic_array.shape[0])
コード例 #8
0
import numpy as np
import gzbuilder_analysis.parsing as parsing
import gzbuilder_analysis.spirals as spirals
from scipy.integrate import odeint
from scipy.optimize import minimize
import lib.galaxy_utilities as gu

subject_id = 20902040

galaxy_classifcations = gu.classifications.query(
    'subject_ids == {}'.format(subject_id))
drawn_arms = spirals.get_drawn_arms(galaxy_classifcations)

gal, angle = gu.get_galaxy_and_angle(subject_id)
ba = gal['PETRO_BA90']
im = gu.get_image(subject_id)
psf = gu.get_psf(subject_id)
diff_data = gu.get_diff_data(subject_id)
pixel_mask = 1 - np.array(diff_data['mask'])[::-1]
galaxy_data = np.array(diff_data['imageData'])[::-1]
size_diff = diff_data['width'] / diff_data['imageWidth']

# functions for plotting
# tv = lambda v: parsing.transform_val(v, np.array(im).shape[0], gal['PETRO_THETA'])
# ts = lambda v: parsing.transform_shape(v, galaxy_data.shape[0], gal['PETRO_THETA'])
# ts_a = lambda v: parsing.transform_shape(v, galaxy_data.shape[0], gal['PETRO_THETA'])
# imshow_kwargs = dict(cmap='gray', origin='lower', extent=[tv(0), tv(np.array(im).shape[0])]*2)


# Swing amplification model (not using sklearn pipelines)
def _swing_amplification_dydt(r, theta, b):
コード例 #9
0
def plot_aggregation(subject_id, model=None, cluster_masks=None, arms=None):
    if model is None or cluster_masks is None or arms is None:
        print(model)
        model_path = os.path.join(
            'cluster-output', '{}.json'.format(subject_id)
        )
        masks_path = os.path.join('cluster_masks', '{}.npy'.format(subject_id))
        if not (os.path.exists(model_path) and os.path.exists(masks_path)):
            return
        with open(model_path) as f:
            model = json.load(f)
        with open(masks_path) as f:
            cluster_masks = np.load(f)
        arms = get_spiral_arms(subject_id, should_recreate=False)

    annotations = gu.classifications[
        gu.classifications['subject_ids'] == subject_id
    ]['annotations'].apply(json.loads)
    models = annotations\
        .apply(ash.remove_scaling)\
        .apply(pa.parse_annotation)\
        .apply(sanitize_model)
    spirals = models.apply(lambda d: d.get('spiral', None))
    geoms = pd.DataFrame(
        models.apply(get_geoms).values.tolist(),
        columns=('disk', 'bulge', 'bar')
    )

    logsps = [arm.reprojected_log_spiral for arm in arms]

    disk_cluster_geoms = geoms['disk'][cluster_masks[0]]
    bulge_cluster_geoms = geoms['bulge'][cluster_masks[1]]
    bar_cluster_geoms = geoms['bar'][cluster_masks[2]]

    aggregate_disk_geom = ash.make_ellipse(model['disk'])
    aggregate_bulge_geom = ash.make_ellipse(model['bulge'])
    aggregate_bar_geom = ash.make_box(model['bar'])

    gal, angle = gu.get_galaxy_and_angle(subject_id)
    pic_array, _ = gu.get_image(gal, subject_id, angle)

    def ts(s):
        return ash.transform_shape(s, pic_array.shape[0],
                                   gal['PETRO_THETA'].iloc[0])

    def tv(v):
        return ash.transform_val(v, pic_array.shape[0],
                                 gal['PETRO_THETA'].iloc[0])

    imshow_kwargs = {
        'cmap': 'gray',
        'origin': 'lower',
        'extent': [tv(0), tv(pic_array.shape[0])]*2,
    }
    fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(
        ncols=2, nrows=2,
        figsize=(10, 10),
        sharex=True, sharey=True
    )
    ax0.imshow(pic_array, **imshow_kwargs)
    for comp in geoms['disk'].values:
        if comp:
            ax0.add_patch(
                PolygonPatch(ts(comp), fc='C0', ec='k',
                             alpha=0.2, zorder=3)
            )
    ax1.imshow(pic_array, **imshow_kwargs)
    for comp in geoms['bulge'].values:
        if comp:
            ax1.add_patch(
                PolygonPatch(ts(comp), fc='C1', ec='k',
                             alpha=0.5, zorder=3)
            )
    ax2.imshow(pic_array, **imshow_kwargs)
    for comp in geoms['bar'].values:
        if comp:
            ax2.add_patch(
                PolygonPatch(ts(comp), fc='C2', ec='k',
                             alpha=0.2, zorder=3)
            )
    ax3.imshow(pic_array, **imshow_kwargs)
    for arm in arms:
        for a in arm.arms:
            ax3.plot(*tv(a).T)

    for i, ax in enumerate((ax0, ax1, ax2, ax3)):
        ax.set_xlim(imshow_kwargs['extent'][:2])
        ax.set_ylim(imshow_kwargs['extent'][2:])
        if i % 2 == 0:
            ax.set_ylabel('Arcseconds from center')
        if i > 1:
            ax.set_xlabel('Arcseconds from center')
    fig.subplots_adjust(wspace=0.05, hspace=0.05)
    plt.savefig('drawn_shapes/{}.pdf'.format(subject_id), bbox_inches='tight')
    plt.close()

    fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(
        ncols=2, nrows=2,
        figsize=(10, 10),
        sharex=True, sharey=True
    )
    ax0.imshow(pic_array, **imshow_kwargs)
    for comp in disk_cluster_geoms.values:
        ax0.add_patch(
            PolygonPatch(ts(comp), fc='C0', ec='k', alpha=0.1, zorder=3)
        )
    if model['disk'] is not None:
        aggregate_disk_geom = ash.make_ellipse(model['disk'])
        ax0.add_patch(
            PolygonPatch(ts(aggregate_disk_geom), fc='C1', ec='k', alpha=0.5,
                         zorder=3)
        )
    ax1.imshow(pic_array, **imshow_kwargs)
    for comp in bulge_cluster_geoms.values:
        ax1.add_patch(
            PolygonPatch(ts(comp), fc='C1', ec='k', alpha=0.1, zorder=3)
        )
    if aggregate_bulge_geom is not None:
        ax1.add_patch(
            PolygonPatch(ts(aggregate_bulge_geom), fc='C2', ec='k', alpha=0.5,
                         zorder=3)
        )
    ax2.imshow(pic_array, **imshow_kwargs)
    for comp in bar_cluster_geoms.values:
        ax2.add_patch(
            PolygonPatch(ts(comp), fc='C2', ec='k', alpha=0.1, zorder=3)
        )
    if aggregate_bar_geom is not None:
        ax2.add_patch(
            PolygonPatch(ts(aggregate_bar_geom), fc='C3', ec='k', alpha=0.5,
                         zorder=3)
        )
    ax3.imshow(pic_array, **imshow_kwargs)
    for arm in arms:
        plt.plot(*tv(arm.coords).T, '.', alpha=0.5, markersize=0.5)
    for arm in logsps:
        plt.plot(*tv(arm).T)

    for i, ax in enumerate((ax0, ax1, ax2, ax3)):
        ax.set_xlim(imshow_kwargs['extent'][:2])
        ax.set_ylim(imshow_kwargs['extent'][2:])
        if i % 2 == 0:
            ax.set_ylabel('Arcseconds from center')
        if i > 1:
            ax.set_xlabel('Arcseconds from center')
    fig.subplots_adjust(wspace=0.05, hspace=0.05)
    plt.savefig('clustered_shapes/{}.pdf'.format(subject_id),
                bbox_inches='tight')
    plt.close()

    fig = plt.figure(figsize=(10, 10))
    ax = plt.gca()
    ax.imshow(pic_array, **imshow_kwargs)
    if aggregate_disk_geom is not None:
        ax.add_patch(
            PolygonPatch(ts(aggregate_disk_geom), fc='C0', ec='k', alpha=0.25,
                         zorder=3)
        )
    if aggregate_bulge_geom is not None:
        ax.add_patch(
            PolygonPatch(ts(aggregate_bulge_geom), fc='C1', ec='k', alpha=0.25,
                         zorder=3)
        )
    if aggregate_bar_geom is not None:
        ax.add_patch(
            PolygonPatch(ts(aggregate_bar_geom), fc='C2', ec='k', alpha=0.25,
                         zorder=3)
        )
    for arm in logsps:
        plt.plot(*tv(arm).T, c='C3')

    ax.set_xlim(imshow_kwargs['extent'][:2])
    ax.set_ylim(imshow_kwargs['extent'][2:])
    ax.set_ylabel('Arcseconds from center')
    ax.set_xlabel('Arcseconds from center')
    plt.savefig('aggregate_model/{}.pdf'.format(subject_id),
                bbox_inches='tight')
    plt.close()
コード例 #10
0
def main(mangaid, subject_id):
    gal, angle = gu.get_galaxy_and_angle(subject_id)
    unit_converter = convert_arcsec_to_km(gal)
    df = read_file(mangaid)
    invalid_mask = df.values == -9999.0
    mask = np.any(invalid_mask, axis=1)
    df.iloc[mask] = np.nan
    df = df.dropna()
    df['R-arcsec'] = df['R']
    df['R'] = unit_converter(df['R'])
    scale = 4 * float(gal['PETRO_THETA'])
    zoo_coords_r = df['R-arcsec'].values / scale
    keys = (
        'GAS_IC-V',
        'GAS___-V',
        'BTH_IC-V',
        'BTH___-V',
    )
    labels = (
        r'$H_\alpha$ velocity, fixed center & inclination',
        r'$H_\alpha$ velocity, varying center & inclination',
        r'$H_\alpha$ and stellar velocity, fixed center & inclination',
        r'$H_\alpha$ and stellar velocity, varying centre and inclination',
    )
    drawn_arms = gu.get_drawn_arms(subject_id, gu.classifications)
    arm_pipeline = Pipeline(drawn_arms,
                            phi=angle,
                            ba=gal['PETRO_BA90'],
                            image_size=512,
                            parallel=True)
    arms = arm_pipeline.get_arms()
    gzb_pa, gzb_sigma_pa = arm_pipeline.get_pitch_angle(arms)
    arm_details = [{
        'pa':
        arm.pa,
        'sigma_pa':
        arm.sigma_pa,
        'min_r':
        unit_converter(
            np.linalg.norm(arm.log_spiral - (256, 256), axis=1).min() *
            float(gal['PETRO_THETA']) * 4 / 512),
        'max_r':
        unit_converter(
            np.linalg.norm(arm.log_spiral - (256, 256), axis=1).max() *
            float(gal['PETRO_THETA']) * 4 / 512)
    } for arm in arms]
    min_r = min(a['min_r'] for a in arm_details)
    max_r = max(a['max_r'] for a in arm_details)
    fitted = {}
    fig, ax = plt.subplots(figsize=(8, 6))
    sa_pas = []
    sa_pa_datas = []
    for i, (key, label) in enumerate(zip(keys, labels)):
        f = tanh_model(df['R'].values, df[key].values)
        p = least_squares(f, (160, 1E-17), x_scale=(10, 1E-17))['x']
        fitted[key] = f(p) + df[key].values
        # Calculate shear from analytic solve of dln(Ω)/dln(R)
        shear = shear_from_tanh(p[1], df['R'].values)
        omega = df[key] / (2 * np.pi * df['R'])
        shear_data = get_shear(omega[:-1], df['R'].values[:-1])

        plt.plot(df['R'], shear, c='C{}'.format(i % 10), label=label)
        plt.plot(np.stack((df['R'][:-1], df['R'][1:])).mean(axis=0),
                 shear_data,
                 '--',
                 c='C{}'.format(i % 10))

        sa_pa = np.rad2deg(get_predicted_pa(shear))
        sa_pa_data = np.rad2deg(get_predicted_pa(shear_data))
        sa_pas.append(sa_pa)
        sa_pa_datas.append(sa_pa_data)
        print('For key: {}'.format(key))
        msk = (df['R'] > min_r) & (df['R'] < max_r)
        print('\tRotation-predicted: {:.4f}°'.format(sa_pa[msk].mean()))
        print('\tGZB measured PA: {:.4f} ± {:.4f}°'.format(
            gzb_pa, gzb_sigma_pa))

    plt.plot([], [], 'k-', label=r'Analytic differentiation')
    plt.plot([], [], 'k--', label='Numerical differentiation')

    plt.xlabel('Distance from galaxy centre [km]')
    plt.ylabel(r'Shear rate, $\Gamma$')
    plt.legend()
    plt.savefig('{}_shear.pdf'.format(mangaid), bbox_inches='tight')
    plt.close()

    np.save('pavr', np.stack((zoo_coords_r, sa_pas[0]), axis=1))

    imshow_kwargs = {
        'cmap': 'gray',
        'origin': 'lower',
        'extent': [-0.5 * scale, 0.5 * scale] * 2,
    }
    pic_array, _ = gu.get_image(gal, subject_id, angle)
    fig, ax = plt.subplots(ncols=1, figsize=(5, 5))
    plt.imshow(pic_array, **imshow_kwargs)
    for i, arm in enumerate(arms):
        varying_arm_t = fit_varying_pa(arm, zoo_coords_r,
                                       np.stack(sa_pas).mean(axis=0))
        t_predict = np.linspace(varying_arm_t.min(), varying_arm_t.max(), 100)
        f = interp1d(varying_arm_t, zoo_coords_r)
        varying_arm = xy_from_r_theta(f(t_predict), t_predict)

        log_spiral = xy_from_r_theta(*np.flipud(arm.polar_logsp))
        plt.plot(*arm.deprojected_coords.T * scale, '.', markersize=1, alpha=1)
        plt.plot(*log_spiral * scale, c='r', linewidth=3, alpha=0.8)
        plt.plot(*varying_arm * scale, c='g', linewidth=3, alpha=0.8)
    # plots for legend
    plt.plot([], [],
             c='g',
             linewidth=3,
             alpha=0.8,
             label='Swing-amplified spiral')
    plt.plot([], [], c='r', linewidth=3, alpha=0.8, label='Logarithmic spiral')
    plt.axis('equal')
    plt.xlabel('Arcseconds from galaxy centre')
    plt.ylabel('Arcseconds from galaxy centre')
    plt.xlim(-25, 25)
    plt.ylim(-25, 25)
    plt.legend()
    plt.savefig('{}_varying-pa.pdf'.format(mangaid), bbox_inches='tight')
    plt.close()
    return

    fig, ax = plt.subplots(figsize=(8, 6))
    for sa_pa, label in zip(sa_pas, labels):
        plt.plot(df['R'], sa_pa, label=label)
    for row in arm_details:
        plt.hlines(row['pa'], row['min_r'], row['max_r'])
        plt.fill_between(
            np.linspace(row['min_r'], row['max_r'], 2),
            row['pa'] - row['sigma_pa'],
            row['pa'] + row['sigma_pa'],
            color='k',
            alpha=0.2,
        )
    plt.legend()
    plt.xlabel('Distance from galaxy centre [km]')
    plt.ylabel('Pitch angle [degrees]')
    plt.savefig('{}_pa.pdf'.format(mangaid), bbox_inches='tight')
    plt.close()

    fig, ax = plt.subplots(figsize=(8, 6))
    # df.plot('R', keys, label=labels, ax=ax)
    for i, key in enumerate(keys):
        plt.fill_between(
            df['R'].values,
            df[key].values - df[key + 'e'].values,
            df[key].values + df[key + 'e'].values,
            color='C{}'.format(i % 10),
            alpha=0.1,
        )
        plt.plot(df['R'].values, df[key].values, '--', c='C{}'.format(i % 10))
        plt.plot(df['R'].values, fitted[key], c='C{}'.format(i % 10))
    for i, label in enumerate(labels):
        plt.plot([], [], c='C{}'.format(i % 10), label=label)
    plt.plot([], [], 'k-', label=r'$A\tanh(bR)$ model')
    plt.plot([], [], 'k--', label='Data')
    plt.legend()
    plt.xlabel('Distance from galaxy centre [km]')
    plt.ylabel(r'Rotational velocity [$\mathrm{km}\mathrm{s}^{-1}$]')
    plt.savefig('{}_rotational-velocity_2.pdf'.format(mangaid),
                bbox_inches='tight')
    plt.close()