コード例 #1
0
ファイル: app.py プロジェクト: zhengxiang94/imgrec
from io import BytesIO
from datetime import datetime
from flask import Flask, request, render_template
from random import random, choice

from lib import data_util
from lib.config import params_setup
from lib.googlenet import GoogLeNet

app = Flask(__name__)

# model
# scope_name, label_size = '17flowers', 17
# scope_name, label_size = '17portraits', 9
args = params_setup()
gnet = GoogLeNet(args=args)


#---------------------------
#   Server
#---------------------------
@app.route('/', methods=['GET'])
def guess():
    url = request.args.get('url', '')
    if url:
        X = url2sample(url)
        probs = gnet.predict([X])[0]
        cnt = int(sum([math.exp(i + 4) * probs[i] for i in range(len(probs))]))
        probs = [(i, round(100 * p, 1)) for i, p in enumerate(probs)]
    else:
        cnt, probs = None, None
コード例 #2
0
ファイル: train.py プロジェクト: xil248/cogs181_final
from __future__ import division, print_function, absolute_import

from lib import data_util
from lib.config import params_setup
from lib.googlenet import GoogLeNet
from datetime import datetime

import pickle, gzip
import numpy as np
import tflearn.datasets.oxflower17 as oxflower17


#-------------------------------
#   Training
#-------------------------------
# scope_name, label_size = '17flowers', 17
# scope_name, label_size = '17portraits', 9
args = params_setup()
gnet = GoogLeNet(args=args) #img_size=227,  label_size=label_size, gpu_memory_fraction=0.4, scope_name=scope_name)
pkl_files = gnet.get_data(dirname=args.model_name, down_sampling=args.down_sampling)

epoch = 0
while True:
    for f in pkl_files:
        X, Y = pickle.load(gzip.open(f, 'rb'))
        gnet.fit(X, Y, n_epoch=10)
        print('[pkl_files] done with %s @ %s' % (f, datetime.now()))
    epoch += 1
    # print("[Finish] all pkl_files been trained %i times." % epoch)
    
コード例 #3
0
ファイル: train.py プロジェクト: superactivWzj/googLeNet
from lib.config import params_setup
from lib.googlenet import GoogLeNet
from datetime import datetime
import tensorflow as tf

import tflearn
import pickle, gzip
import numpy as np
import tflearn.datasets.oxflower17 as oxflower17

# -------------------------------
#   Training
# -------------------------------

args = params_setup()
gnet = GoogLeNet(args=args)
# img_size=227,  label_size=label_size, gpu_memory_fraction=0.4, scope_name=scope_name)
pkl_files = gnet.get_data(dirname=args.model_name,
                          down_sampling=args.down_sampling)

epoch = 0

while True:
    for f in pkl_files:
        X, Y = pickle.load(gzip.open(f, 'rb'))
        with tf.device('/device:GPU:0'):
            gnet.fit(X, Y, n_epoch=10)
        print('[pkl_files] done with %s @ %s' % (f, datetime.now()))
    epoch += 1
    print("[Finish] all pkl_files been trained %i times." % epoch)
コード例 #4
0
import pickle, gzip
import numpy as np
import tflearn.datasets.oxflower17 as oxflower17

# import AI Vision train service module
from dnn_train import train_service

#-------------------------------
#   Training
#-------------------------------

# init AI Vision train service
train_service = train_service.TrainService()

args = params_setup()
gnet = GoogLeNet(args, train_service)

# go to pre-processing stage
train_service.sendStatusMessagePreproccess()

# go to training stage
train_service.sendStatusMessageTrain()
print(pkl_files)
for f in pkl_files:
    X, Y = pickle.load(gzip.open(f, 'rb'))
    gnet.fit(X, Y, n_epoch=100)
    gnet.save()
    print('[pkl_files] done with %s @ %s' % (f, datetime.now()))

# go to complete stage
train_service.sendStatusMessageComplete()
コード例 #5
0
import numpy as np

from PIL import Image
from scipy import misc
from io import BytesIO
from datetime import datetime
from flask import Flask, request, render_template
from random import random, choice

from lib import data_util
from lib.config import params_setup
from lib.googlenet import GoogLeNet

# model
args = params_setup()
gnet = GoogLeNet(args=args)
directory_names = list(set(glob.glob(os.path.join("images","tiny-imagenet-200","jpg", "*"))\
 ).difference(set(glob.glob(os.path.join("images","tiny-imagenet-200","jgp","*.*",)))))

total_count = 0.
correct_count = 0.
# len(directory_names)
for i in range(len(directory_names)):
    imgs_in_folder = glob.glob(
        os.path.join(directory_names[i], "images", "*.JPEG"))
    for j in range(400, len(imgs_in_folder)):
        cur_img = imgs_in_folder[j]
        # img = imread(cur_img)
        # img = load_image(s)
        # img = Image.open(cur_img)
        # # img = resize_image(img, 227, 227)