def save(self): # if self. if not self.isInit: save_dir = QtGui.QFileDialog.getExistingDirectory( None, 'Select a folder to save the result', self.default_dir, QtGui.QFileDialog.ShowDirsOnly) self.isInit = True self.save_dir = str(save_dir) utils.mkdirs(self.save_dir) self.html = image_save.ImageSave(self.save_dir, 'Gui screenshot', append=True) print('save the result to (%s)' % self.save_dir) if self.z is not None: self.z_dir = os.path.join(self.save_dir, 'z_vectors') utils.mkdirs(self.z_dir) utils.PickleSave( os.path.join( self.z_dir, 'z_drawing%3.3d_%3.3d' % (self.reset_count, self.save_count)), self.z) if self.ims is not None: txts = [''] * self.ims.shape[0] self.html.save_image( self.ims, txts=txts, header='generated images (Drawing %3.3d, Step %3.3d)' % (self.reset_count, self.save_count), cvt=True, width=128) self.html.save() self.save_count += 1
npx, n_layers, n_f, nc, nz, niter, niter_decay = getattr( train_dcgan_config, args.model_name)() expr_name = args.model_name + args.ext if not args.cache_dir: args.cache_dir = './cache/%s/' % expr_name for arg in vars(args): print('[%s] =' % arg, getattr(args, arg)) # create directories rec_dir = os.path.join(args.cache_dir, 'rec') model_dir = os.path.join(args.cache_dir, 'models') log_dir = os.path.join(args.cache_dir, 'log') web_dir = os.path.join(args.cache_dir, 'web_rec') html = image_save.ImageSave(web_dir, expr_name, append=True) utils.mkdirs([rec_dir, model_dir, log_dir, web_dir]) # load data tr_data, te_data, tr_stream, te_stream, ntrain, ntest \ = load_imgs(ntrain=None, ntest=None, batch_size=args.batch_size, data_file=args.data_file) te_handle = te_data.open() ntest = int(np.floor(ntest / float(args.batch_size)) * args.batch_size) # st() test_x, = te_data.get_data(te_handle, slice(0, ntest)) test_x = train_dcgan_utils.transform(test_x, nc=nc) predict_params = train_dcgan_utils.init_predict_params(nz=nz, n_f=n_f, n_layers=n_layers, nc=nc)