def __init__(self): args = self.arg_parser.parse_known_args()[0] super(Ema, self).__init__() self.name = 'ema' self.min_history_ticks = 30 self.pair = self.parse_pairs(args.pairs)[0] self.buy_sell_mode = BuySellMode.all self.stop_loss = StopLoss(int(args.ticker_size))
def __init__(self): args = self.arg_parser.parse_known_args()[0] super(Emasuperprediction, self).__init__() self.name = 'emasuperprediction' self.min_history_ticks = 60 self.pair = self.parse_pairs(args.pairs)[0] self.buy_sell_mode = BuySellMode.all self.stop_loss = StopLoss(int(args.ticker_size)) self.Bought = False self.interval = int(args.ticker_size) self.standardizationFeatureFlag = True self.numStudyTrial = 50 self.backTestInitialFund = 1000 self.backTestDays = 15 self.backTestSpread = 0 self.marginTrade = False
class Tcg(Base): """ Tcg strategy About: Buy when close_price > ema20, sell when close_price < ema20 and below death_cross """ arg_parser = configargparse.get_argument_parser() def __init__(self): args = self.arg_parser.parse_known_args()[0] super(Tcg, self).__init__() self.name = 'tcg' self.min_history_ticks = 30 self.pair = self.parse_pairs(args.pairs)[0] self.buy_sell_mode = BuySellMode.all self.stop_loss = StopLoss(int(args.ticker_size)) self.data = Data() def calculate(self, look_back, wallet, tickr): """ Main strategy logic (the meat of the strategy) """ (dataset_cnt, _) = common.get_dataset_count(look_back, self.group_by_field) # Wait until we have enough data if dataset_cnt < self.min_history_ticks: print('dataset_cnt:', dataset_cnt) return self.actions self.actions.clear() new_action = TradeState.none # Calculate indicators df = look_back.tail(self.min_history_ticks) close = df['close'].values df1 = df['id'].tail(n=1) val = df1.iloc[0] val = val.split('-') loop_time = int(val[2]) market_pair = 'BTCUSD' sentiment = 'Bear' timeframe = '4h' indicator_type = 'Bear TCG Cross' loop_datetime = datetime.fromtimestamp( loop_time, tz=pytz.utc).strftime('%Y-%m-%d %H:%M:%S') alerts = self.data.load_backtest_epochs(market_pair, sentiment, timeframe, indicator_type, loop_datetime) for alert_time in alerts['epochs']: if alert_time in range(loop_time - 1800, loop_time): print( "+!+!+!+!+!++!+!+!+!++!+!++!+! ALERT HIT +!+!+!+!++!+!+! {} {} {} " .format(alert_time, loop_time - 1800, loop_time)) print(datetime.fromtimestamp(alert_time).strftime('%c')) print(datetime.fromtimestamp(loop_time - 1800).strftime('%c')) print(datetime.fromtimestamp(loop_time).strftime('%c')) new_action = TradeState.sell trade_price = self.get_price(new_action, df.tail(), self.pair) # print("trade price {}".format(trade_price) # Get stop-loss if new_action == TradeState.sell and self.stop_loss.calculate(close): print( '-------- stop-loss detected,..buying!!!!!!!!!!!!!!!!!!!!!!!! ' ) new_action = TradeState.buy action = TradeAction(self.pair, new_action, amount=None, rate=trade_price, buy_sell_mode=self.buy_sell_mode) self.actions.append(action) return self.actions
class Ema(Base): """ Ema strategy About: Buy when close_price > ema20, sell when close_price < ema20 and below death_cross """ arg_parser = configargparse.get_argument_parser() def __init__(self): args = self.arg_parser.parse_known_args()[0] super(Ema, self).__init__() self.name = 'ema' self.min_history_ticks = 30 self.pair = self.parse_pairs(args.pairs)[0] self.buy_sell_mode = BuySellMode.all self.stop_loss = StopLoss(int(args.ticker_size)) def calculate(self, look_back, wallet): """ Main strategy logic (the meat of the strategy) """ (dataset_cnt, _) = common.get_dataset_count(look_back, self.group_by_field) # Wait until we have enough data if dataset_cnt < self.min_history_ticks: print('dataset_cnt:', dataset_cnt) return self.actions self.actions.clear() new_action = TradeState.none # Calculate indicators df = look_back.tail(self.min_history_ticks) close = df['close'].values # ************** Calc EMA ema5 = talib.EMA(close[-5:], timeperiod=5)[-1] ema10 = talib.EMA(close[-10:], timeperiod=10)[-1] ema20 = talib.EMA(close[-20:], timeperiod=20)[-1] close_price = self.get_price(TradeState.none, df.tail(), self.pair) print('close_price:', close_price, 'ema:', ema20) if close_price < ema10 or close_price < ema20: new_action = TradeState.sell elif close_price > ema5 and close_price > ema10: new_action = TradeState.buy # ************** Calc EMA Death Cross ema_interval_short = 6 ema_interval_long = 25 ema_short = talib.EMA(close[-ema_interval_short:], timeperiod=ema_interval_short)[-1] ema_long = talib.EMA(close[-ema_interval_long:], timeperiod=ema_interval_long)[-1] if ema_short <= ema_long: # If we are below death cross, sell new_action = TradeState.sell trade_price = self.get_price(new_action, df.tail(), self.pair) # Get stop-loss if new_action == TradeState.buy and self.stop_loss.calculate(close): print('stop-loss detected,..selling') new_action = TradeState.sell action = TradeAction(self.pair, new_action, amount=None, rate=trade_price, buy_sell_mode=self.buy_sell_mode) self.actions.append(action) return self.actions