def build_cnf(): diffeq = layers.ODEnet( hidden_dims=hidden_dims, input_shape=data_shape, strides=strides, conv=args.conv, layer_type=args.layer_type, nonlinearity=args.nonlinearity, ) odefunc = layers.ODEfunc( diffeq=diffeq, divergence_fn=args.divergence_fn, residual=args.residual, rademacher=args.rademacher, ) cnf = layers.CNF( odefunc=odefunc, T=args.time_length, train_T=args.train_T, regularization_fns=regularization_fns, solver=args.solver, num_steps=args.num_steps, adjoint=args.adjoint, ) return cnf
def build_cnf(): diffeq = layers.ODEnet( hidden_dims=hidden_dims, input_shape=(dims,), strides=None, conv=False, layer_type=args.layer_type, nonlinearity=args.nonlinearity, ) odefunc = layers.ODEfunc( diffeq=diffeq, divergence_fn=args.divergence_fn, residual=args.residual, rademacher=args.rademacher, ) cnf = layers.CNF( odefunc=odefunc, T=args.time_length, train_T=args.train_T, solver=args.solver, atol = args.atol, rtol = args.rtol, test_atol = args.test_atol, test_rtol = args.test_rtol, poly_num_sample=args.poly_num_sample, poly_order=args.poly_order, adjoint=args.adjoint, ) return cnf
def build_cnf(): diffeq = layers.ODEnet( hidden_dims=hidden_dims, input_shape=data_shape, strides=strides, conv=args.conv, layer_type=args.layer_type, nonlinearity=args.nonlinearity, ) odefunc = layers.ODEfunc( diffeq=diffeq, divergence_fn=args.divergence_fn, residual=args.residual, rademacher=args.rademacher, ) cnf = layers.CNF( odefunc=odefunc, T=args.time_length, solver=args.solver, ) return cnf
def build_cnf(): diffeq = layers.ODEnet( hidden_dims=hidden_dims, input_shape=(dims, ), strides=None, conv=False, layer_type=args.layer_type, nonlinearity=args.nonlinearity, ) odefunc = layers.ODEfunc( diffeq=diffeq, divergence_fn=args.divergence_fn, rademacher=args.rademacher, ) cnf = layers.CNF( odefunc=odefunc, T=args.time_length, train_T=args.train_T, regularization_fns=regularization_fns, solver=args.solver, ) return cnf