コード例 #1
0
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, kpoints_pred, im_info, cfg_key,
                   _feat_stride, anchors, num_anchors):
    """A simplified version compared to fast/er RCNN
       For details please see the technical report
    """
    if type(cfg_key) == bytes:
        cfg_key = cfg_key.decode('utf-8')
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
    min_size = cfg[cfg_key].ANCHOR_MIN_SIZE

    # Get the scores and bounding boxes
    scores = rpn_cls_prob[:, :, :, num_anchors:]
    rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
    scores = scores.reshape((-1, 1))
    proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
    proposals = clip_boxes(proposals, im_info[:2])

    # Get the facial landmarks
    kpoints_pred = kpoints_pred.reshape(-1, 10)
    points = kpoints_transform_inv(anchors, kpoints_pred)
    points = clip_kpoints(points, im_info[:2])

    # removed predicted boxes with either height or width < threshold
    # (NOTE: convert min_size to input image scale stored in im_info[2])
    keep = _filter_boxes(proposals, min_size * im_info[2])
    proposals = proposals[keep, :]
    scores = scores[keep]
    points = points[keep]

    # Pick the top region proposals
    order = scores.ravel().argsort()[::-1]
    if pre_nms_topN > 0:
        order = order[:pre_nms_topN]
    proposals = proposals[order, :]
    scores = scores[order]
    points = points[order]

    # Non-maximal suppression
    keep = nms(np.hstack((proposals, scores)), nms_thresh)

    # Pick th top region proposals after NMS
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals = proposals[keep, :]
    scores = scores[keep]
    points = points[keep]

    # Only support single image as input
    batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
    blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))

    return blob, scores, points
コード例 #2
0
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride,
                   anchors, num_anchors):
    """
    rpn_cls_prob = [n, h, w, c=a*2]
    rpn_bbox_pred = [n, h, w, c=4*a]
  """
    if type(cfg_key) == bytes:
        cfg_key = cfg_key.decode('utf-8')
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

    # Get the scores and bounding boxes
    # 0:num_anchors is the probability of BG
    scores = rpn_cls_prob[:, :, :, num_anchors:]
    bbox_deltas = rpn_bbox_pred.view((-1, 4))
    scores = scores.contiguous().view((-1, 1))

    # 1.Convert anchors into proposals via bbox transformations
    proposals = bbox_transform_inv(anchors, bbox_deltas)

    # 2.clip predicted boxes to image
    proposals = clip_boxes(proposals, im_info[:2])

    # # 3.remove predicted boxes with either height or width < threshold
    # # (NOTE: convert min_size to input image scale stored in im_info[2])
    # keep = _filter_boxes(proposals, _feat_stride[0] * im_info[2])
    # proposals = proposals[keep, :]
    # scores = scores[keep]

    # 4.sort all (proposal, score) pairs by score from highest to lowest
    # 5.take top pre_nms_topN (e.g. Train12000 Test6000)
    _, order = scores.view(-1).sort(descending=True)
    if pre_nms_topN > 0:
        order = order[:pre_nms_topN]
    proposals = proposals[order.data, :]
    scores = scores[order.data, :]

    # 6.Non-maximal suppression apply nms (e.g. threshold = 0.7)
    keep = nms(torch.cat((proposals, scores), 1).data, nms_thresh)

    # 7.Pick th top region proposals after NMS (e.g. Train2000 Test300)
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals = proposals[keep, :]
    scores = scores[keep, :]

    # 8.Only support single image as input
    batch_inds = Variable(proposals.data.new(proposals.size(0), 1).zero_())
    blob = torch.cat((batch_inds, proposals), 1)
    del batch_inds
    return blob, scores
コード例 #3
0
def proposal_top_layer_batch(rpn_cls_probs, rpn_bbox_preds, im_info,
                             _feat_stride, anchors, num_anchors,
                             network_device):
    """A layer that just selects the top region proposals
     without using non-maximal suppression,
     For details please see the technical report
  """
    rpn_top_n = cfg.TEST.RPN_TOP_N

    scores = rpn_cls_probs[:, :, :, num_anchors:]

    rpn_bbox_preds = rpn_bbox_preds.view(rpn_bbox_preds.size(0), -1, 4)
    scores = scores.contiguous().view(rpn_bbox_preds.size(0), -1, 1)

    blobs, scoress = [], []
    for i in range(scores.size(0)):
        score = scores[i]
        length = score.size(0)
        if length < rpn_top_n:
            # Random selection, maybe unnecessary and loses good proposals
            # But such case rarely happens
            top_inds = torch.from_numpy(
                npr.choice(length, size=rpn_top_n,
                           replace=True)).long().cuda(network_device)
        else:
            top_inds = score.sort(0, descending=True)[1]
            top_inds = top_inds[:rpn_top_n]
            top_inds = top_inds.view(rpn_top_n)

        # Do the selection here
        anchor = anchors[top_inds, :].contiguous()
        rpn_bbox_pred = rpn_bbox_preds[i][top_inds, :].contiguous()
        score = score[top_inds].contiguous()

        # Convert anchors into proposals via bbox transformations
        proposal = bbox_transform_inv(anchor, rpn_bbox_pred)
        # Clip predicted boxes to image
        proposal = clip_boxes(proposal, im_info[:2])

        # Output rois blob
        # Our RPN implementation only supports a single input image, so all
        # batch inds are 0
        batch_inds = proposal.new_zeros(proposal.size(0), 1)
        blob = torch.cat([batch_inds, proposal], 1)
        blobs.append(blob)
        scoress.append(score)
    return blobs, scoress
コード例 #4
0
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride,
                   anchors, num_anchors):
    """A simplified version compared to fast/er RCNN
     For details please see the technical report
  """
    if type(cfg_key) == bytes:
        cfg_key = cfg_key.decode('utf-8')
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

    # Get the scores and bounding boxes
    scores = rpn_cls_prob[:, :, :, num_anchors:]  #每个anchor 有打分
    rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
    scores = scores.reshape((-1, 1))
    proposals = bbox_transform_inv(
        anchors, rpn_bbox_pred
    )  #通过这个函数 把 anchor 转化成 proposal?   根据anchor 与 rpn_bbox 返回一个预测的 proposal
    proposals = clip_boxes(proposals, im_info[:2])

    # Pick the top region proposals
    order = scores.ravel().argsort()[::-1]  #筛选出 top_N的 proposal
    if pre_nms_topN > 0:
        order = order[:pre_nms_topN]
    proposals = proposals[order, :]
    scores = scores[order]

    # Non-maximal suppression
    keep = nms(
        np.hstack((proposals, scores)), nms_thresh
    )  #极大抑制算法 继续筛选proposal  NMS threshold used on RPN proposals=0.7 重合度大于0.7视为同一类

    # Pick th top region proposals after NMS
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals = proposals[keep, :]
    scores = scores[keep]  #挑选 排序最好的 几个proposal

    # Only support single image as input
    batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
    blob = np.hstack(
        (batch_inds, proposals.astype(np.float32,
                                      copy=False)))  #返回 proposal 列表

    return blob, scores
コード例 #5
0
def proposal_layer_batch(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key,
                         _feat_stride, anchors, num_anchors, network_device):
    """A simplified version compared to fast/er RCNN
     For details please see the technical report
  """
    if type(cfg_key) == bytes:
        cfg_key = cfg_key.decode('utf-8')
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

    # Get the scores and bounding boxes
    scores = rpn_cls_prob[:, :, :, num_anchors:]
    rpn_bbox_pred = rpn_bbox_pred.view((rpn_bbox_pred.size(0), -1, 4))
    scores = scores.contiguous().view(scores.size(0), -1, 1)
    proposals = bbox_transform_inv_batch(anchors, rpn_bbox_pred)  #here bug
    proposals = list(map(lambda x: clip_boxes(x, im_info[:2]), proposals))

    blobs, scoress = [], []
    for i in range(scores.size(0)):
        # Pick the top region proposals
        score, order = scores[i].view(-1).sort(descending=True)
        if pre_nms_topN > 0:
            order = order[:pre_nms_topN]
            score = score[:pre_nms_topN].view(-1, 1)
        proposal = proposals[i][order.data, :]

        # Non-maximal suppression
        keep = nms_batch(
            torch.cat((proposal, score), 1).data, nms_thresh, network_device)
        # Pick th top region proposals after NMS
        if post_nms_topN > 0:
            keep = keep[:post_nms_topN]
        proposal = proposal[keep]
        score = score[keep]

        # Only support single image as input
        batch_inds = proposal.new_zeros(proposal.size(0), 1)
        blob = torch.cat((batch_inds, proposal), 1)
        blobs.append(blob)
        scoress.append(score)
    return blobs, scoress
コード例 #6
0
def proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, im_info, _feat_stride,
                       anchors, num_anchors):
    """A layer that just selects the top region proposals
     without using non-maximal suppression,
     For details please see the technical report
  """
    rpn_top_n = cfg.TEST.RPN_TOP_N
    im_info = im_info[0]

    scores = rpn_cls_prob[:, :, :, num_anchors:]

    rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
    scores = scores.reshape((-1, 1))

    length = scores.shape[0]
    if length < rpn_top_n:
        # Random selection, maybe unnecessary and loses good proposals
        # But such case rarely happens
        top_inds = npr.choice(length, size=rpn_top_n, replace=True)
    else:
        top_inds = scores.argsort(0)[::-1]
        top_inds = top_inds[:rpn_top_n]
        top_inds = top_inds.reshape(rpn_top_n, )

    # Do the selection here
    anchors = anchors[top_inds, :]
    rpn_bbox_pred = rpn_bbox_pred[top_inds, :]
    scores = scores[top_inds]

    # Convert anchors into proposals via bbox transformations
    proposals = bbox_transform_inv(anchors, rpn_bbox_pred)

    # Clip predicted boxes to image
    proposals = clip_boxes(proposals, im_info[:2])

    # Output rois blob
    # Our RPN implementation only supports a single input image, so all
    # batch inds are 0
    batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
    blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
    return blob, scores
コード例 #7
0
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride,
                   anchors, num_anchors):
    """A simplified version compared to fast/er RCNN
     For details please see the technical report
  """
    if type(cfg_key) == bytes:
        cfg_key = cfg_key.decode('utf-8')
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

    # Get the scores and bounding boxes
    scores = rpn_cls_prob[:, :, :, num_anchors:]
    rpn_bbox_pred = rpn_bbox_pred.view((-1, 4))
    scores = scores.contiguous().view(-1, 1)
    proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
    proposals = clip_boxes(proposals, im_info[:2])

    # Pick the top region proposals
    scores, order = scores.view(-1).sort(descending=True)
    if pre_nms_topN > 0:
        order = order[:pre_nms_topN]
        scores = scores[:pre_nms_topN].view(-1, 1)
    proposals = proposals[order.data, :]

    # Non-maximal suppression
    keep = nms(proposals, scores.squeeze(1), nms_thresh)

    # Pick th top region proposals after NMS
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals = proposals[keep, :]
    scores = scores[keep, ]

    # Only support single image as input
    batch_inds = proposals.new_zeros(proposals.size(0), 1)
    blob = torch.cat((batch_inds, proposals), 1)

    return blob, scores