def __init__(self, input_num, num1, num2, dilation_rate, drop_out, norm_type): super(_DenseAsppBlock, self).__init__() self.add_module( 'conv1', nn.Conv2d(in_channels=input_num, out_channels=num1, kernel_size=1)), self.add_module( 'norm1', ModuleHelper.BatchNorm2d(norm_type=norm_type)(num_features=num1)), self.add_module('relu1', nn.ReLU(inplace=False)), self.add_module( 'conv2', nn.Conv2d(in_channels=num1, out_channels=num2, kernel_size=3, dilation=dilation_rate, padding=dilation_rate)), self.add_module( 'norm2', ModuleHelper.BatchNorm2d(norm_type=norm_type)( num_features=input_num)), self.add_module('relu2', nn.ReLU(inplace=False)), self.drop_rate = drop_out
def __init__(self, input_nc, ndf=64, n_layers=3, norm_type=None): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() use_bias = (norm_type == 'instancenorm') kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), ModuleHelper.BatchNorm2d(norm_type=norm_type)(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), ModuleHelper.BatchNorm2d(norm_type=norm_type)(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [ nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence)
def __init__(self, low_in_channels, high_in_channels, out_channels, key_channels, value_channels, dropout, sizes=([1]), norm_type=None, psp_size=(1, 3, 6, 8)): super(AFNB, self).__init__() self.stages = [] self.norm_type = norm_type self.psp_size = psp_size self.stages = nn.ModuleList([ self._make_stage([low_in_channels, high_in_channels], out_channels, key_channels, value_channels, size) for size in sizes ]) self.conv_bn_dropout = nn.Sequential( nn.Conv2d(out_channels + high_in_channels, out_channels, kernel_size=1, padding=0), ModuleHelper.BatchNorm2d(norm_type=self.norm_type)(out_channels), nn.Dropout2d(dropout))
def build_conv_block(self, dim, padding_type, norm_type, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [ nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), ModuleHelper.BatchNorm2d(norm_type=norm_type)(dim), nn.ReLU(True) ] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [ nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), ModuleHelper.BatchNorm2d(norm_type=norm_type)(dim) ] return nn.Sequential(*conv_block)
def __init__(self, num_input_features, num_output_features, norm_type): super(_Transition, self).__init__() self.add_module( 'conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) self.add_module( 'norm', ModuleHelper.BatchNorm2d(norm_type=norm_type)( num_features=num_output_features)), self.add_module('relu', nn.ReLU(inplace=False))
def __init__(self, input_nc, ndf=64, norm_type=None): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() use_bias = (norm_type == 'instancenorm') self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), ModuleHelper.BatchNorm2d(norm_type=norm_type)(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net)
def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_type=None, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer user_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost use_bias = (norm_type == 'instancenorm') if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = ModuleHelper.BatchNorm2d(norm_type=norm_type)(inner_nc) uprelu = nn.ReLU(True) upnorm = ModuleHelper.BatchNorm2d(norm_type=norm_type)(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model)
def __init__(self, input_nc, output_nc, ngf=64, norm_type=None, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert (n_blocks >= 0) super(ResNetGenerator, self).__init__() use_bias = (norm_type == 'instancenorm') model = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), ModuleHelper.BatchNorm2d(norm_type=norm_type)(ngf), nn.ReLU(True) ] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2**i model += [ nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), ModuleHelper.BatchNorm2d(norm_type=norm_type)(ngf * mult * 2), nn.ReLU(True) ] mult = 2**n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ ResnetBlock(ngf * mult, padding_type=padding_type, norm_type=norm_type, use_dropout=use_dropout, use_bias=use_bias) ] for i in range(n_downsampling): # add upsampling layers mult = 2**(n_downsampling - i) model += [ nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), ModuleHelper.BatchNorm2d(norm_type=norm_type)(int(ngf * mult / 2)), nn.ReLU(True) ] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model)
def _make_stage(self, features, out_features, size, norm_type): prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) bn = ModuleHelper.BatchNorm2d(norm_type=norm_type)(out_features) return nn.Sequential(prior, conv, bn)