self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count # model model = get_model(trunk='vgg19') model = torch.nn.DataParallel(model).cuda() # load pretrained use_vgg(model) # Fix the VGG weights first, and then the weights will be released for i in range(20): for param in model.module.model0[i].parameters(): param.requires_grad = False trainable_vars = [param for param in model.parameters() if param.requires_grad] optimizer = torch.optim.SGD(trainable_vars, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov) for epoch in range(5): # train for one epoch
def main(args): sys.path.append( args.openpose_dir) # In case calling from an external script from lib.network.rtpose_vgg import get_model from lib.network.rtpose_vgg import use_vgg from lib.network import im_transform from evaluate.coco_eval import get_outputs, handle_paf_and_heat from lib.utils.common import Human, BodyPart, CocoPart, CocoColors, CocoPairsRender, draw_humans from lib.utils.paf_to_pose import paf_to_pose_cpp from lib.config import cfg, update_config update_config(cfg, args) model = get_model('vgg19') model = torch.nn.DataParallel(model).cuda() use_vgg(model) # model.load_state_dict(torch.load(args.weight)) checkpoint = torch.load(args.weight) epoch = checkpoint['epoch'] best_loss = checkpoint['best_loss'] state_dict = checkpoint['state_dict'] # state_dict = {key.replace("module.",""):value for key, value in state_dict.items()} # Remove "module." from vgg keys model.load_state_dict(state_dict) # optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})".format(args.weight, epoch)) model.float() model.eval() image_folders = args.image_folders.split(',') for i, image_folder in enumerate(image_folders): print( f"\nProcessing {i} of {len(image_folders)}: {' '.join(image_folder.split('/')[-4:-2])}" ) if args.all_frames: # Split video and run inference on all frames output_dir = os.path.join(os.path.dirname(image_folder), 'predictions', 'pose2d', 'openpose_pytorch_ft_all') os.makedirs(output_dir, exist_ok=True) video_path = os.path.join( image_folder, 'scan_video.avi') # break up video and run on all frames temp_folder = image_folder.split('/')[-3] + '_openpose' image_folder = os.path.join( '/tmp', f'{temp_folder}') # Overwrite image_folder os.makedirs(image_folder, exist_ok=True) split_video(video_path, image_folder) else: # Just use GT-annotated frames output_dir = os.path.join(os.path.dirname(image_folder), 'predictions', 'pose2d', 'openpose_pytorch_ft') os.makedirs(output_dir, exist_ok=True) img_mask = os.path.join(image_folder, '??????.png') img_names = glob(img_mask) for img_name in img_names: image_file_path = img_name oriImg = cv2.imread(image_file_path) # B,G,R order shape_dst = np.min(oriImg.shape[0:2]) with torch.no_grad(): paf, heatmap, im_scale = get_outputs(oriImg, model, 'rtpose') humans = paf_to_pose_cpp(heatmap, paf, cfg) # Save joints in OpenPose format image_h, image_w = oriImg.shape[:2] people = [] for i, human in enumerate(humans): keypoints = [] for j in range(18): if j == 8: keypoints.extend([ 0, 0, 0 ]) # Add extra joint (midhip) to correspond to body_25 if j not in human.body_parts.keys(): keypoints.extend([0, 0, 0]) else: body_part = human.body_parts[j] keypoints.extend([ body_part.x * image_w, body_part.y * image_h, body_part.score ]) person = {"person_id": [i - 1], "pose_keypoints_2d": keypoints} people.append(person) people_dict = {"people": people} _, filename = os.path.split(image_file_path) name, _ = os.path.splitext(filename) frame_id = int(name) with open( os.path.join(output_dir, f"scan_video_{frame_id:012}_keypoints.json"), 'w') as outfile: json.dump(people_dict, outfile) if args.all_frames: shutil.rmtree(image_folder) # Delete image_folder
args = parse_args() update_config(cfg, args) print("Loading dataset...") # load train data preprocess = transforms.Compose([ transforms.Normalize(), transforms.RandomApply(transforms.HFlip(), 0.5), transforms.RescaleRelative(scale_range=(cfg.DATASET.SCALE_MIN, cfg.DATASET.SCALE_MAX)), transforms.Crop(cfg.DATASET.IMAGE_SIZE), transforms.CenterPad(cfg.DATASET.IMAGE_SIZE), ]) # model rtpose_vgg = get_model(trunk='vgg19') # load pretrained use_vgg(rtpose_vgg) class rtpose_lightning(pl.LightningModule): def __init__(self, preprocess, target_transforms, model, optimizer): super(rtpose_lightning, self).__init__() self.preprocess = preprocess self.model = model self.opt = optimizer self.target_transforms = target_transforms def forward(self, x): _, saved_for_loss = self.model.forward(x) return saved_for_loss