コード例 #1
0
ファイル: model_dense.py プロジェクト: Merle314/SRGAN-Face
def generatorDense(gen_inputs, gen_output_channels, reuse=False, is_training=None):
    # The main netowrk
    with tf.variable_scope('generator_unit', reuse=reuse):
        # The input stage
        with tf.variable_scope('input_stage'):
            net = conv2(gen_inputs, 9, 64, 1, scope='conv')
            net = prelu_tf(net)

        # The dense block part
        # Define the denseblock configuration
        layer_per_block = 16
        bottleneck_scale = 4
        growth_rate = 12
        transition_output_channel = 128
        with tf.variable_scope('denseBlock_1'):
            net = denseBlock(net, layer_per_block, bottleneck_scale, growth_rate, is_training)

        with tf.variable_scope('transition_layer_1'):
            net = transitionLayer(net, transition_output_channel, is_training)

        with tf.variable_scope('subpixelconv_stage1'):
            net = conv2(net, 3, 256, 1, scope='conv')
            net = pixelShuffler(net, scale=2)
            net = prelu_tf(net)

        with tf.variable_scope('subpixelconv_stage2'):
            net = conv2(net, 3, 256, 1, scope='conv')
            net = pixelShuffler(net, scale=2)
            net = prelu_tf(net)

        with tf.variable_scope('output_stage'):
            net = conv2(net, 9, gen_output_channels, 1, scope='conv')

        return net
コード例 #2
0
def generator(gen_inputs, gen_output_channels, reuse=False, FLAGS=None):
    # Check the flag
    if FLAGS is None:
        raise ValueError('No FLAGS is provided for generator')

    # The Bx residual blocks
    def residual_block(inputs, output_channels, stride, scope):
        with tf.variable_scope(scope):
            net = ops.conv3d(inputs,
                             3,
                             output_channels,
                             stride,
                             use_bias=False,
                             scope='conv_1')
            if (FLAGS.GAN_type == 'GAN'):
                net = ops.batchnorm(net, FLAGS.is_training)
            net = ops.prelu_tf(net)
            net = ops.conv3d(net,
                             3,
                             output_channels,
                             stride,
                             use_bias=False,
                             scope='conv_2')
            if (FLAGS.GAN_type == 'GAN'):
                net = ops.batchnorm(net, FLAGS.is_training)
            net = net + inputs
        return net

    with tf.variable_scope('generator_unit', reuse=reuse):
        # The input layer
        with tf.variable_scope('input_stage'):
            net = ops.conv3d(gen_inputs, 9, 64, 1, scope='conv')
            net = ops.prelu_tf(net)

        stage1_output = net

        # The residual block parts
        for i in range(1, FLAGS.num_resblock + 1, 1):
            name_scope = 'resblock_%d' % (i)
            net = residual_block(net, 64, 1, name_scope)

        with tf.variable_scope('resblock_output'):
            net = ops.conv3d(net, 3, 64, 1, use_bias=False, scope='conv')
            if (FLAGS.GAN_type == 'GAN'):
                net = ops.batchnorm(net, FLAGS.is_training)

        net = net + stage1_output

        with tf.variable_scope('subpixelconv_stage1'):
            net = ops.conv3d(net, 3, 256, 1, scope='conv')
            net = ops.pixelShuffler(net, scale=2)
            net = ops.prelu_tf(net)

        with tf.variable_scope('subpixelconv_stage2'):
            net = ops.conv3d(net, 3, 256, 1, scope='conv')
            net = ops.pixelShuffler(net, scale=2)
            net = ops.prelu_tf(net)

        with tf.variable_scope('output_stage'):
            net = ops.conv3d(net, 9, gen_output_channels, 1, scope='conv')

    return net
コード例 #3
0
ファイル: model_gan.py プロジェクト: Merle314/SRGAN-Face
def generator_split(gen_inputs,
                    gen_output_channels,
                    num_resblock=16,
                    reuse=False,
                    is_training=None):
    # The Bx residual blocks
    def residual_block(inputs, output_channel, stride, scope):
        with tf.variable_scope(scope):
            net = conv2(inputs,
                        3,
                        output_channel,
                        stride,
                        use_bias=False,
                        scope='conv_1')
            net = prelu_tf(net)
            net = conv2(net,
                        3,
                        output_channel,
                        stride,
                        use_bias=False,
                        scope='conv_2')
            net = net + inputs
        return net

    with tf.variable_scope('generator_unit', reuse=reuse):
        # The input layer
        with tf.variable_scope('input_stage'):
            net = conv2(gen_inputs, 9, 64, 1, scope='conv')
            net = prelu_tf(net)
        stage1_output = net
        # The residual block parts
        for i in range(1, num_resblock + 1, 1):
            name_scope = 'resblock_%d' % (i)
            net = residual_block(net, 64, 1, name_scope)
        with tf.variable_scope('resblock_output'):
            net = conv2(net, 3, 64, 1, use_bias=False, scope='conv')
        net = net + stage1_output
    inputs_top = tf.slice(net, [0, 0, 0, 0], [-1, 17, -1, -1])
    inputs_down = tf.slice(net, [0, 15, 0, 0], [-1, -1, -1, -1])
    with tf.variable_scope('generator_unit_1', reuse=reuse):
        with tf.variable_scope('subpixelconv_stage1'):
            net = relate_conv(inputs_top, 64, 64, scope='conv')
            net = pixelShuffler(net, scale=2)
            net = prelu_tf(net)
        with tf.variable_scope('subpixelconv_stage2'):
            net = relate_conv(net, 64, 64, scope='conv')
            net = pixelShuffler(net, scale=2)
            net_top = prelu_tf(net)
    with tf.variable_scope('generator_unit_2', reuse=reuse):
        with tf.variable_scope('subpixelconv_stage1'):
            net = relate_conv(inputs_down, 64, 64, scope='conv')
            net = pixelShuffler(net, scale=2)
            net = prelu_tf(net)
        with tf.variable_scope('subpixelconv_stage2'):
            net = relate_conv(net, 64, 64, scope='conv')
            net = pixelShuffler(net, scale=2)
            net_down = prelu_tf(net)
    net = tf.concat([
        tf.slice(net_top, [0, 0, 0, 0], [-1, 64, -1, -1]),
        tf.slice(net_down, [0, 4, 0, 0], [-1, -1, -1, -1])
    ],
                    axis=1)
    with tf.variable_scope('output_stage'):
        net = conv2(net, 9, gen_output_channels, 1, scope='conv')
        net = tf.nn.tanh(net)
    return net
コード例 #4
0
ファイル: model_gan.py プロジェクト: Merle314/SRGAN-Face
def generator(gen_inputs,
              gen_output_channels,
              num_resblock=16,
              reuse=False,
              is_training=None):
    # The Bx residual blocks
    def residual_block(inputs, output_channel, stride, scope):
        with tf.variable_scope(scope):
            net = conv2(inputs,
                        3,
                        output_channel,
                        stride,
                        use_bias=False,
                        scope='conv_1')
            # net = batchnorm(net, is_training)
            net = prelu_tf(net)
            net = conv2(net,
                        3,
                        output_channel,
                        stride,
                        use_bias=False,
                        scope='conv_2')
            # net = batchnorm(net, is_training)
            net = net + inputs
        return net

    with tf.variable_scope('generator_unit', reuse=reuse):
        # The input layer
        with tf.variable_scope('input_stage'):
            net = conv2(gen_inputs, 9, 64, 1, scope='conv')
            net = prelu_tf(net)
        stage1_output = net
        # The residual block parts
        for i in range(1, num_resblock + 1, 1):
            name_scope = 'resblock_%d' % (i)
            net = residual_block(net, 64, 1, name_scope)
        with tf.variable_scope('resblock_output'):
            net = conv2(net, 3, 64, 1, use_bias=False, scope='conv')
            # net = batchnorm(net, is_training)
        net = net + stage1_output
        with tf.variable_scope('subpixelconv_stage1'):
            # net = conv2(net, 3, 256, 1, scope='conv')
            net = subpixel_pre(net,
                               input_channel=64,
                               output_channel=256,
                               scope='conv')
            # net = relate_conv(net, 64, 64, scope='conv')
            # net = interpolation_conv(net, 64, 64, scope='conv')
            net = pixelShuffler(net, scale=2)
            net = prelu_tf(net)
        with tf.variable_scope('subpixelconv_stage2'):
            # net = conv2(net, 3, 256, 1, scope='conv')
            net = subpixel_pre(net,
                               input_channel=64,
                               output_channel=256,
                               scope='conv')
            # net = relate_conv(net, 64, 64, scope='conv')
            # net = interpolation_conv(net, 64, 64, scope='conv')
            net = pixelShuffler(net, scale=2)
            net = prelu_tf(net)
        with tf.variable_scope('output_stage'):
            net = conv2(net, 9, gen_output_channels, 1, scope='conv')
            # net = tf.nn.tanh(net)
    return net