def paf_to_pose_cpp(heatmaps, pafs, config): humans = [] joint_list_per_joint_type = NMS(heatmaps, upsampFactor=config.MODEL.DOWNSAMPLE, config=config) joint_list = np.array([ tuple(peak) + (joint_type, ) for joint_type, joint_peaks in enumerate(joint_list_per_joint_type) for peak in joint_peaks ]).astype(np.float32) if joint_list.shape[0] > 0: joint_list = np.expand_dims(joint_list, 0) paf_upsamp = cv2.resize(pafs, None, fx=config.MODEL.DOWNSAMPLE, fy=config.MODEL.DOWNSAMPLE, interpolation=cv2.INTER_NEAREST) heatmap_upsamp = cv2.resize(heatmaps, None, fx=config.MODEL.DOWNSAMPLE, fy=config.MODEL.DOWNSAMPLE, interpolation=cv2.INTER_NEAREST) pafprocess.process_paf(joint_list, heatmap_upsamp, paf_upsamp) for human_id in range(pafprocess.get_num_humans()): human = Human([]) is_added = False for part_idx in range(config.MODEL.NUM_KEYPOINTS): c_idx = int(pafprocess.get_part_cid(human_id, part_idx)) if c_idx < 0: continue is_added = True human.body_parts[part_idx] = BodyPart( '%d-%d' % (human_id, part_idx), part_idx, float(pafprocess.get_part_x(c_idx)) / heatmap_upsamp.shape[1], float(pafprocess.get_part_y(c_idx)) / heatmap_upsamp.shape[0], pafprocess.get_part_score(c_idx)) if is_added: score = pafprocess.get_score(human_id) human.score = score humans.append(human) return humans
for part_idx in range(18): c_idx = int(pafprocess.get_part_cid(human_id, part_idx)) if c_idx < 0: continue is_added = True human.body_parts[part_idx] = BodyPart( '%d-%d' % (human_id, part_idx), part_idx, float(pafprocess.get_part_x(c_idx)) / heatmap.shape[1], float(pafprocess.get_part_y(c_idx)) / heatmap.shape[0], pafprocess.get_part_score(c_idx) ) if is_added: score = pafprocess.get_score(human_id) human.score = score humans.append(human) out = draw_humans(oriImg, humans) # Display the resulting frame cv2.imshow('Video', out) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows()