def do_cdfs(options, stats, write_filepath): if not write_filepath: write_filepath = get_output_filepath(options.input) for metric in options.metrics: print("reformatting data...") data = {} for i, g in enumerate(stats['group']): if options.max and i >= options.max: break data[g] = [d[metric] for d in stats['data'][g]["distribution"]] print("plotting CDFs") xmax = round(math.ceil(max(data[stats['group'][0]]))) axis_limits = [0, xmax, 0, 1] if options.minx: axis_limits[0] = options.minx if options.maxx: axis_limits[1] = options.maxx plot.plot('cdf', data, COLORS, axis_limits, metric, "linear", "linear", write_filepath + '_' + metric + '_cdfs', options.write, xlabel=metric_fullname(metric) + ' (miles)', ylabel='fraction of \ncontroller placements', ext=options.ext) if not options.write: plot.show()
def do_cdfs(options, stats, write_filepath): if not write_filepath: write_filepath = get_output_filepath(options.input) for metric in options.metrics: print "reformatting data..." data = {} for i, g in enumerate(stats['group']): if options.max and i >= options.max: break data[g] = [d[metric] for d in stats['data'][g]["distribution"]] print "plotting CDFs" xmax = round(math.ceil(max(data[stats['group'][0]]))) axis_limits = [0, xmax, 0, 1] if options.minx: axis_limits[0] = options.minx if options.maxx: axis_limits[1] = options.maxx plot.plot('cdf', data, COLORS, axis_limits, metric, "linear", "linear", write_filepath + '_' + metric + '_cdfs', options.write, xlabel = metric_fullname(metric) + ' (miles)', ylabel = 'fraction of \ncontroller placements', ext = options.ext) if not options.write: plot.show()
def do_ranges(options, stats, write_filepath, topo_name): # Grab topo to enable analysis that requires generating new metric values, # such as the value of one metric with a combo optimized for another one. ''' topo_graph returns @param g: NetworkX Graph @param usable: boolean: locations on all nodes and connected? @param note: error or note about mods ''' print "generating topo for: %s" % topo_name graph, usable, note = get_topo_graph(topo_name) if not usable: raise Exception("unusable graph?") if not write_filepath: write_filepath = get_output_filepath(options.input) for metric in options.metrics: this_write_filepath = write_filepath + '_' + metric xlabel = 'number of controllers (k)' for ptype in options.plots: if ptype in PLOT_FCNS.keys(): p = PLOT_FCNS[ptype] #print "plotting %s" % ptype filepath = this_write_filepath + '_' + ptype aspect_fcns = get_aspect_fcns(p, stats, metric, graph) aspects = aspect_fcns.keys() aspect_colors = p['aspect_colors'] ylabel = p['ylabel'](metric) min_x = p['min_x'](options) if 'min_x' in p else None max_x = p['max_x'](options) if 'max_x' in p else None min_y = p['min_y'](options) if 'min_y' in p else None max_y = p['max_y'](options) if 'max_y' in p else None ylabel2 = p['ylabel2'](metric) if 'ylabel2' in p else None y2_scale_factor = p['y2_scale_factor'] if 'y2_scale_factor' in p else None hlines = p['hlines'] if 'hlines' in p else None plot.ranges(stats, metric, aspects, aspect_colors, aspect_fcns, "linear", "linear", None, None, filepath, options.write, ext = options.ext, xlabel = xlabel, ylabel = ylabel, min_x = min_x, max_x = max_x, min_y = min_y, max_y = max_y, ylabel2 = ylabel2, y2_scale_factor = y2_scale_factor, hlines = hlines) else: raise Exception("undefined ptype: %s" % ptype) if not options.write: plot.show()
def do_pareto(options, stats, write_filepath): assert len(options.metrics) == 2 x_metric, y_metric = options.metrics print "reformatting data..." data = {} for i, g in enumerate(stats['group']): if options.max and i >= options.max: break data[g] = [d for d in stats['data'][g]["distribution"]] print "plotting point pareto" if not write_filepath: write_filepath = get_output_filepath(options.input) write_filepath += '_pareto_' + ','.join(options.metrics) plot.pareto(data, COLORS, None, "linear", "linear", write_filepath, options.write, xlabel = metric_fullname(x_metric) + ' (miles)', ylabel = metric_fullname(y_metric) + ' (miles)', ext = options.ext, x_metric = x_metric, y_metric = y_metric, min_x = 0, min_y = 0) plot.pareto(data, COLORS, None, "linear", "linear", write_filepath + '_zoom', options.write, xlabel = metric_fullname(x_metric) + ' (miles)', ylabel = metric_fullname(y_metric) + ' (miles)', ext = options.ext, min_x = 0, min_y = 0, x_metric = x_metric, y_metric = y_metric, loc = "lower right") plot.pareto(data, COLORS, None, "linear", "linear", write_filepath + '_norm', options.write, xlabel = metric_fullname(x_metric) + ' (ratio)', ylabel = metric_fullname(y_metric) + ' (ratio)', ext = options.ext, x_metric = x_metric, y_metric = y_metric, # max_x = 1.2, # max_y = 1.2, normalize = True, legend = True, loc = "upper right") if not options.write: plot.show()
def systemrun(): sys = ising.Wolff(N,T) initialConfig, delta, flipcount = sys.run(100000) show = plot.show(initialConfig, delta, flipcount) #show.saveVideo() show.showPlot()
def do_cloud(options, stats, write_filepath, ext=None): assert len(options.metrics) == 2 x_metric, y_metric = options.metrics print("reformatting data...") metrics = [x_metric, y_metric] data = {} for i, g in enumerate(stats['group']): if options.max and i >= options.max: break data[g] = [d for d in stats['data'][g]["distribution"]] print("plotting point cloud") if not write_filepath: write_filepath = get_output_filepath(options.input) # Series may not have values that monotonically decrease by the controller # number, so consider each value when choosing axis extents. extra_margin = 1.02 maxes = {x_metric: [], y_metric: []} for c in stats['group']: for metric in options.metrics: maxes[metric].append(stats['data'][c][metric]['highest']) axes = [ 0, max(maxes[x_metric]) * extra_margin, 0, max(maxes[y_metric]) * extra_margin ] if not ext: ext = options.ext plot.cloud(data, COLORS, axes, "linear", "linear", write_filepath + '_cloud_' + ','.join(options.metrics), options.write, xlabel=metric_fullname(x_metric) + ' (miles)', ylabel=metric_fullname(y_metric) + ' (miles)', ext=ext, x_metric=x_metric, y_metric=y_metric, legend=True) if not options.write: plot.show()
def metropolisrun(): N = 400 T = 1.8 sys = ising.Metropolis(N,T) initialConfig, delta = sys.run(1600000) show = plot.show(initialConfig, delta, []) show.showPlot()
def do_cloud(options, stats, write_filepath, ext = None): assert len(options.metrics) == 2 x_metric, y_metric = options.metrics print "reformatting data..." metrics = [x_metric, y_metric] data = {} for i, g in enumerate(stats['group']): if options.max and i >= options.max: break data[g] = [d for d in stats['data'][g]["distribution"]] print "plotting point cloud" if not write_filepath: write_filepath = get_output_filepath(options.input) # Series may not have values that monotonically decrease by the controller # number, so consider each value when choosing axis extents. extra_margin = 1.02 maxes = {x_metric: [], y_metric: []} for c in stats['group']: for metric in options.metrics: maxes[metric].append(stats['data'][c][metric]['highest']) axes = [0, max(maxes[x_metric]) * extra_margin, 0, max(maxes[y_metric]) * extra_margin] if not ext: ext = options.ext plot.cloud(data, COLORS, axes, "linear", "linear", write_filepath + '_cloud_' + ','.join(options.metrics), options.write, xlabel = metric_fullname(x_metric) + ' (miles)', ylabel = metric_fullname(y_metric) + ' (miles)', ext = ext, x_metric = x_metric, y_metric = y_metric, legend = True) if not options.write: plot.show()
def do_ranges(options, stats, write_filepath, topo_name): # Grab topo to enable analysis that requires generating new metric values, # such as the value of one metric with a combo optimized for another one. ''' topo_graph returns @param g: NetworkX Graph @param usable: boolean: locations on all nodes and connected? @param note: error or note about mods ''' print "generating topo for: %s" % topo_name graph, usable, note = get_topo_graph(topo_name) if not usable: raise Exception("unusable graph?") if not write_filepath: write_filepath = get_output_filepath(options.input) for metric in options.metrics: this_write_filepath = write_filepath + '_' + metric xlabel = 'number of controllers (k)' for ptype in options.plots: if ptype in PLOT_FCNS.keys(): p = PLOT_FCNS[ptype] #print "plotting %s" % ptype filepath = this_write_filepath + '_' + ptype aspect_fcns = get_aspect_fcns(p, stats, metric, graph) aspects = aspect_fcns.keys() aspect_colors = p['aspect_colors'] ylabel = p['ylabel'](metric) min_x = p['min_x'](options) if 'min_x' in p else None max_x = p['max_x'](options) if 'max_x' in p else None min_y = p['min_y'](options) if 'min_y' in p else None max_y = p['max_y'](options) if 'max_y' in p else None ylabel2 = p['ylabel2'](metric) if 'ylabel2' in p else None y2_scale_factor = p[ 'y2_scale_factor'] if 'y2_scale_factor' in p else None hlines = p['hlines'] if 'hlines' in p else None plot.ranges(stats, metric, aspects, aspect_colors, aspect_fcns, "linear", "linear", None, None, filepath, options.write, ext=options.ext, xlabel=xlabel, ylabel=ylabel, min_x=min_x, max_x=max_x, min_y=min_y, max_y=max_y, ylabel2=ylabel2, y2_scale_factor=y2_scale_factor, hlines=hlines) else: raise Exception("undefined ptype: %s" % ptype) if not options.write: plot.show()
def do_pareto(options, stats, write_filepath): assert len(options.metrics) == 2 x_metric, y_metric = options.metrics print "reformatting data..." data = {} for i, g in enumerate(stats['group']): if options.max and i >= options.max: break data[g] = [d for d in stats['data'][g]["distribution"]] print "plotting point pareto" if not write_filepath: write_filepath = get_output_filepath(options.input) write_filepath += '_pareto_' + ','.join(options.metrics) plot.pareto(data, COLORS, None, "linear", "linear", write_filepath, options.write, xlabel=metric_fullname(x_metric) + ' (miles)', ylabel=metric_fullname(y_metric) + ' (miles)', ext=options.ext, x_metric=x_metric, y_metric=y_metric, min_x=0, min_y=0) plot.pareto(data, COLORS, None, "linear", "linear", write_filepath + '_zoom', options.write, xlabel=metric_fullname(x_metric) + ' (miles)', ylabel=metric_fullname(y_metric) + ' (miles)', ext=options.ext, min_x=0, min_y=0, x_metric=x_metric, y_metric=y_metric, loc="lower right") plot.pareto( data, COLORS, None, "linear", "linear", write_filepath + '_norm', options.write, xlabel=metric_fullname(x_metric) + ' (ratio)', ylabel=metric_fullname(y_metric) + ' (ratio)', ext=options.ext, x_metric=x_metric, y_metric=y_metric, # max_x = 1.2, # max_y = 1.2, normalize=True, legend=True, loc="upper right") if not options.write: plot.show()