コード例 #1
0
def gen_gt_observed():
    for cls_idx, cls_name in idx2class.items():
        print(cls_idx, cls_name)
        # uncomment here to only generate data for ape
        # if cls_name != 'ape':
        #     continue
        with open(
                os.path.join(observed_set_dir, "{}_all.txt".format(cls_name)),
                "r") as f:
            all_indices = [line.strip("\r\n") for line in f.readlines()]

        # render machine
        model_dir = os.path.join(LM6d_root, "models", cls_name)
        render_machine = Render_Py(model_dir, K, width, height, ZNEAR, ZFAR)

        for observed_idx in tqdm(all_indices):
            video_name, prefix = observed_idx.split("/")
            # read pose -------------------------------------
            observed_meta_path = os.path.join(
                observed_data_root, "{}-meta.mat".format(observed_idx))
            meta_data = sio.loadmat(observed_meta_path)
            inner_id = np.where(
                np.squeeze(meta_data["cls_indexes"]) == cls_idx)
            if len(meta_data["poses"].shape) == 2:
                pose = meta_data["poses"]
            else:
                pose = np.squeeze(meta_data["poses"][:, :, inner_id])

            new_pose_path = os.path.join(gt_observed_root, cls_name,
                                         "{}-pose.txt".format(prefix))
            mkdir_if_missing(os.path.join(gt_observed_root, cls_name))
            # write pose
            write_pose_file(new_pose_path, cls_idx, pose)

            # ----------------------render color, depth ------------
            rgb_gl, depth_gl = render_machine.render(
                RT_transform.mat2quat(pose[:3, :3]), pose[:, -1])
            if any([x in observed_idx
                    for x in ["000128", "000256", "000512"]]):
                rgb_gl = rgb_gl.astype("uint8")
                render_color_path = os.path.join(gt_observed_root, cls_name,
                                                 "{}-color.png".format(prefix))
                cv2.imwrite(render_color_path, rgb_gl)

            # depth
            depth_save = depth_gl * DEPTH_FACTOR
            depth_save = depth_save.astype("uint16")
            render_depth_path = os.path.join(gt_observed_root, cls_name,
                                             "{}-depth.png".format(prefix))
            cv2.imwrite(render_depth_path, depth_save)

            # --------------------- render label ----------------------------------
            render_label = depth_gl != 0
            render_label = render_label.astype("uint8")

            # write label
            label_path = os.path.join(gt_observed_root, cls_name,
                                      "{}-label.png".format(prefix))
            cv2.imwrite(label_path, render_label)
コード例 #2
0
def gen_render_real():
    for cls_idx, cls_name in idx2class.items():
        print(cls_idx, cls_name)
        if cls_name == 'driller':
            continue
        with open(
                os.path.join(real_set_dir,
                             'occLM_val_real_{}.txt'.format(cls_name)),
                'r') as f:
            all_indices = [line.strip('\r\n') for line in f.readlines()]

        # render machine
        model_dir = os.path.join(LM6d_root, 'models', cls_name)
        render_machine = Render_Py(model_dir, K, width, height, ZNEAR, ZFAR)

        for real_idx in tqdm(all_indices):
            video_name, prefix = real_idx.split('/')  # video name is "test"
            # read pose -------------------------------------
            real_meta_path = os.path.join(real_data_root,
                                          "02/{}-meta.mat".format(prefix))
            meta_data = sio.loadmat(real_meta_path)
            inner_id = np.where(
                np.squeeze(meta_data['cls_indexes']) == cls_idx)
            if len(meta_data['poses'].shape) == 2:
                pose = meta_data['poses']
            else:
                pose = np.squeeze(meta_data['poses'][:, :, inner_id])

            new_pose_path = os.path.join(render_real_root, cls_name,
                                         "{}-pose.txt".format(prefix))
            mkdir_if_missing(os.path.join(render_real_root, cls_name))
            # write pose
            write_pose_file(new_pose_path, cls_idx, pose)

            # ----------------------render color, depth ------------
            rgb_gl, depth_gl = render_machine.render(
                RT_transform.mat2quat(pose[:3, :3]), pose[:, -1])
            rgb_gl = rgb_gl.astype('uint8')
            render_color_path = os.path.join(render_real_root, cls_name,
                                             "{}-color.png".format(prefix))
            cv2.imwrite(render_color_path, rgb_gl)

            # depth
            depth_save = depth_gl * DEPTH_FACTOR
            depth_save = depth_save.astype('uint16')
            render_depth_path = os.path.join(render_real_root, cls_name,
                                             "{}-depth.png".format(prefix))
            cv2.imwrite(render_depth_path, depth_save)

            #--------------------- render label ----------------------------------
            render_label = depth_gl != 0
            render_label = render_label.astype('uint8')

            # write label
            label_path = os.path.join(render_real_root, cls_name,
                                      "{}-label.png".format(prefix))
            cv2.imwrite(label_path, render_label)
コード例 #3
0
def render_pose(rendered_dir, count, class_name, fixed_transforms_dict,
                camera_intrinsics, camera_pose, rotation_angles, location,
                rotation):
    width = 960
    height = 540
    K = np.array([[camera_intrinsics['fx'], 0, camera_intrinsics['cx']],
                  [0, camera_intrinsics['fy'], camera_intrinsics['cy']],
                  [0, 0, 1]])
    # Check these TODO
    ZNEAR = 0.1
    ZFAR = 20
    depth_factor = 1000
    model_dir = os.path.join(LM6d_root, "models", class_name)
    # model_dir = os.path.join(LM6d_root, "aligned_cm", class_name, "google_16k")
    render_machine = Render_Py(model_dir, K, width, height, ZNEAR, ZFAR)

    # camera_pose_matrix = np.zeros((4,4))
    # camera_pose_matrix[:, 3] = [i/100 for i in camera_pose['location_worldframe']] + [1]
    # camera_pose_matrix[:3, :3] = RT_transform.quat2mat(get_wxyz_quaternion(camera_pose['quaternion_xyzw_worldframe']))
    # camera_pose_matrix[3,:3] = [0,0,0]
    # print(camera_pose_matrix)

    fixed_transform = np.transpose(np.array(fixed_transforms_dict[class_name]))
    fixed_transform[:3, 3] = [i / 100 for i in fixed_transform[:3, 3]]
    object_world_transform = np.zeros((4, 4))
    object_world_transform[:3, :3] = RT_transform.euler2mat(
        rotation_angles[0], rotation_angles[1], rotation_angles[2])
    # object_world_transform[:3,:3] = RT_transform.euler2mat(0,0,0)
    # object_world_transform[:3, :3] = RT_transform.quat2mat(get_wxyz_quaternion(rotation))
    object_world_transform[:, 3] = [i / 100 for i in location] + [1]

    # print(fixed_transform)
    # total_transform = np.matmul(np.linalg.inv(camera_pose_matrix), object_world_transform)
    # fixed_transform = np.matmul(m, fixed_transform)
    total_transform = np.matmul(object_world_transform, fixed_transform)
    # total_transform = object_world_transform
    pose_rendered_q = RT_transform.mat2quat(total_transform[:3, :3]).tolist(
    ) + total_transform[:3, 3].flatten().tolist()
    # pose_rendered_q = RT_transform.mat2quat(object_world_transform[:3,:3]).tolist() + object_world_transform[:3,3].flatten().tolist()
    # print(pose_rendered_q)
    # rendered_dir = '.'
    # image_file = os.path.join(
    #     rendered_dir,
    #     "{}-{}-color.png".format(count, class_name),
    # )
    # depth_file = os.path.join(
    #     rendered_dir,
    #     "{}-{}-depth.png".format(count, class_name),
    # )
    rgb_gl, depth_gl = render_machine.render(pose_rendered_q[:4],
                                             np.array(pose_rendered_q[4:]))
    rgb_gl = rgb_gl.astype("uint8")

    depth_gl = (depth_gl * depth_factor).astype(np.uint16)

    return rgb_gl, depth_gl
コード例 #4
0
    rendered_root_dir = os.path.join(
        cur_path, '../data/LINEMOD_6D/LM6d_converted/LM6d_render_v1/data',
        version)
    pair_set_dir = os.path.join(
        cur_path, '../data/LINEMOD_6D/LM6d_converted/LM6d_render_v1/image_set')
    mkdir_if_missing(rendered_root_dir)
    mkdir_if_missing(pair_set_dir)
    all_pair = []
    for small_class_idx, class_name in enumerate(tqdm(class_name_list)):
        big_class_idx = class2big_idx[class_name]
        # init render
        model_dir = os.path.join(
            cur_path,
            '../data/LINEMOD_6D/LM6d_converted/models/{}'.format(class_name))
        if gen_images:
            render_machine = Render_Py(model_dir, K, width, height, ZNEAR,
                                       ZFAR)

        with open(keyframe_path.format(class_name)) as f:
            real_index_list = [x.strip() for x in f.readlines()]
        video_name_list = [x.split('/')[0] for x in real_index_list]
        real_prefix_list = [x.split('/')[1] for x in real_index_list]

        all_pair = []
        for idx, real_index in enumerate(real_index_list):
            rendered_dir = os.path.join(rendered_root_dir,
                                        video_name_list[idx], class_name)
            mkdir_if_missing(rendered_dir)
            yu_idx = idx
            yu_pred_file = os.path.join(yu_pred_dir, class_name,
                                        "{:04d}.mat".format(yu_idx))
            yu_pred = sio.loadmat(yu_pred_file)
コード例 #5
0
def main():
    gen_images = True
    for class_idx, class_name in idx2class.items():
        train_pair = []
        val_pair = []
        print("start ", class_idx, class_name)
        if class_name in ["__back_ground__"]:
            continue
        # uncomment here to only generate data for ape
        # if class_name not in ['ape']:
        #     continue

        if gen_images:
            # init renderer
            model_dir = os.path.join(LM6d_root, "models", class_name)
            render_machine = Render_Py(model_dir, K, width, height, ZNEAR, ZFAR)

        for set_type in ["all"]:
            with open(
                os.path.join(observed_set_root, "{}_{}.txt".format(class_name, "all")),
                "r",
            ) as f:
                all_observed_list = [x.strip() for x in f.readlines()]
            # with open(
            #         os.path.join(observed_set_root, '{}_{}.txt'.format(
            #             class_name, 'train')), 'r') as f:
            #     train_observed_list = [x.strip() for x in f.readlines()]
            with open(
                os.path.join(observed_set_root, "{}_{}.txt".format(class_name, "test")),
                "r",
            ) as f:
                test_observed_list = [x.strip() for x in f.readlines()]

            with open(rendered_pose_path.format(set_type, class_name)) as f:
                str_rendered_pose_list = [x.strip().split(" ") for x in f.readlines()]
            rendered_pose_list = np.array(
                [[float(x) for x in each_pose] for each_pose in str_rendered_pose_list]
            )
            rendered_per_observed = 10
            assert len(rendered_pose_list) == 10 * len(
                all_observed_list
            ), "{} vs {}".format(len(rendered_pose_list), len(all_observed_list))
            for idx, observed_index in enumerate(tqdm(all_observed_list)):
                video_name, observed_prefix = observed_index.split("/")
                rendered_dir = os.path.join(rendered_root_dir, class_name)
                mkdir_if_missing(rendered_dir)
                for inner_idx in range(rendered_per_observed):
                    if gen_images:
                        # if gen_images and observed_index in test_observed_list and inner_idx == 0: # only generate my_val_v{}  # noqa:E501
                        image_file = os.path.join(
                            rendered_dir,
                            "{}_{}-color.png".format(observed_prefix, inner_idx),
                        )
                        depth_file = os.path.join(
                            rendered_dir,
                            "{}_{}-depth.png".format(observed_prefix, inner_idx),
                        )
                        rendered_idx = idx * rendered_per_observed + inner_idx
                        pose_rendered_q = rendered_pose_list[rendered_idx]

                        rgb_gl, depth_gl = render_machine.render(
                            pose_rendered_q[:4], pose_rendered_q[4:]
                        )
                        rgb_gl = rgb_gl.astype("uint8")

                        depth_gl = (depth_gl * depth_factor).astype(np.uint16)

                        cv2.imwrite(image_file, rgb_gl)
                        cv2.imwrite(depth_file, depth_gl)

                        pose_rendered_file = os.path.join(
                            rendered_dir,
                            "{}_{}-pose.txt".format(observed_prefix, inner_idx),
                        )
                        text_file = open(pose_rendered_file, "w")
                        text_file.write("{}\n".format(class_idx))
                        pose_rendered_m = np.zeros((3, 4))
                        pose_rendered_m[:, :3] = RT_transform.quat2mat(
                            pose_rendered_q[:4]
                        )
                        pose_rendered_m[:, 3] = pose_rendered_q[4:]
                        pose_ori_m = pose_rendered_m
                        pose_str = "{} {} {} {}\n{} {} {} {}\n{} {} {} {}".format(
                            pose_ori_m[0, 0],
                            pose_ori_m[0, 1],
                            pose_ori_m[0, 2],
                            pose_ori_m[0, 3],
                            pose_ori_m[1, 0],
                            pose_ori_m[1, 1],
                            pose_ori_m[1, 2],
                            pose_ori_m[1, 3],
                            pose_ori_m[2, 0],
                            pose_ori_m[2, 1],
                            pose_ori_m[2, 2],
                            pose_ori_m[2, 3],
                        )
                        text_file.write(pose_str)

                    if observed_index in test_observed_list:
                        if inner_idx == 0:
                            val_pair.append(
                                "{} {}/{}_{}".format(
                                    observed_index,
                                    class_name,
                                    observed_prefix,
                                    inner_idx,
                                )
                            )
                    else:
                        train_pair.append(
                            "{} {}/{}_{}".format(
                                observed_index, class_name, observed_prefix, inner_idx
                            )
                        )

            train_pair_set_file = os.path.join(
                pair_set_dir, "train_{}.txt".format(class_name)
            )
            train_pair = sorted(train_pair)
            with open(train_pair_set_file, "w") as text_file:
                for x in train_pair:
                    text_file.write("{}\n".format(x))

            test_pair_set_file = os.path.join(
                pair_set_dir, "my_val_{}.txt".format(class_name)
            )
            val_pair = sorted(val_pair)
            with open(test_pair_set_file, "w") as text_file:
                for x in val_pair:
                    text_file.write("{}\n".format(x))
        print(class_name, " done")
コード例 #6
0
def adapt_real_train():
    class_list = ["{:02d}".format(i) for i in range(1, 31)]
    sel_classes = ["05", "06"]

    width = 640  # 400
    height = 480  # 400
    depth_factor = 10000
    K_0 = np.array(
        [[1075.65091572, 0, 320.0], [0, 1073.90347929, 240.0], [0, 0, 1]]
    )  # Primesense
    new_data_root = os.path.join(TLESS_root, "TLESS_render_v3/data/real")
    mkdir_if_missing(new_data_root)

    real_set_dir = os.path.join(TLESS_root, "TLESS_render_v3/image_set/real")
    mkdir_if_missing(real_set_dir)

    for cls_idx, cls_name in enumerate(class_list):
        if not cls_name in sel_classes:
            continue
        print(cls_idx, cls_name)

        model_dir = os.path.join(TLESS_root, "models", cls_name)

        render_machine = Render_Py(model_dir, K_0, width, height, ZNEAR, ZFAR)

        gt_path = os.path.join(
            TLESS_root, "t-less_v2/train_primesense/{}/gt.yml".format(cls_name)
        )
        gt_dict = load_gt(gt_path)
        info_path = os.path.join(
            TLESS_root, "t-less_v2/train_primesense/{}/info.yml".format(cls_name)
        )
        info_dict = load_info(info_path)

        real_indices = []

        for img_id in tqdm(gt_dict.keys()):
            R = np.array(gt_dict[img_id][0]["cam_R_m2c"]).reshape((3, 3))
            t = np.array(gt_dict[img_id][0]["cam_t_m2c"]) / 1000.0
            K = np.array(info_dict[img_id]["cam_K"]).reshape((3, 3))

            # K[0, 2] += 120 # cx
            # K[1, 2] += 40 # cy

            pose = np.zeros((3, 4))
            pose[:3, :3] = R
            pose[:3, 3] = t
            # print(pose)
            # print(K)
            K_diff = K_0 - K
            cx_diff = K_diff[0, 2]
            cy_diff = K_diff[1, 2]
            px_diff = int(np.round(cx_diff))
            py_diff = int(np.round(cy_diff))

            # pose ----------------
            pose_path = os.path.join(
                new_data_root, cls_name, "{:06d}-pose.txt".format(img_id)
            )
            mkdir_if_missing(os.path.join(new_data_root, cls_name))
            write_pose_file(pose_path, cls_idx, pose)

            rgb_gl, depth_gl = render_machine.render(
                pose[:3, :3], pose[:, -1], r_type="mat", K=K_0
            )
            rgb_gl = rgb_gl.astype("uint8")

            # depth ------------------
            depth_gl = (depth_gl * depth_factor).astype(np.uint16)
            depth_path = os.path.join(
                new_data_root, cls_name, "{:06d}-depth.png".format(img_id)
            )
            cv2.imwrite(depth_path, depth_gl)

            # label ---------------------
            label_gl = np.zeros(depth_gl.shape)
            label_gl[depth_gl != 0] = 1
            label_path = os.path.join(
                new_data_root, cls_name, "{:06d}-label.png".format(img_id)
            )
            cv2.imwrite(label_path, label_gl)

            # real color ----------------------------
            color_real = read_img(
                os.path.join(
                    ori_train_data_root, cls_name, "rgb/{:04d}.png".format(img_id)
                ),
                3,
            )
            # print(color_real.max(), color_real.min())
            pad_real = np.zeros((480, 640, 3))
            xs = 0
            ys = 0
            pad_real[xs : 400 + xs, ys : 400 + ys, :] = color_real
            pad_real = pad_real.astype("uint8")

            # translate image
            M = np.float32([[1, 0, px_diff], [0, 1, py_diff]])
            pad_real = cv2.warpAffine(pad_real, M, (640, 480))

            color_path = os.path.join(
                new_data_root, cls_name, "{:06d}-color.png".format(img_id)
            )
            cv2.imwrite(color_path, pad_real)

            # real index
            real_indices.append("{}/{:06d}".format(cls_name, img_id))

        real_indices = sorted(real_indices)
        real_set_file = os.path.join(real_set_dir, "{}_train.txt".format(cls_name))
        with open(real_set_file, "w") as f:
            for real_idx in real_indices:
                f.write(real_idx + "\n")
コード例 #7
0
def main():
    gen_images = True  ############
    for class_idx, class_name in idx2class.items():
        val_pair = []
        print("start ", class_name)
        if class_name in ['__back_ground__']:
            continue
        if not class_name in ['bowl', 'cup']:
            continue

        if gen_images:
            # init render
            model_dir = os.path.join(LM6d_root, 'models', class_name)
            render_machine = Render_Py(model_dir, K, width, height, ZNEAR,
                                       ZFAR)

        for set_type in ['all']:
            with open(
                    os.path.join(real_set_root,
                                 '{}_{}.txt'.format(class_name, 'all')),
                    'r') as f:
                all_real_list = [x.strip() for x in f.readlines()]
            with open(
                    os.path.join(real_set_root,
                                 '{}_{}.txt'.format(class_name, 'test')),
                    'r') as f:
                test_real_list = [x.strip() for x in f.readlines()]

            with open(rendered_pose_path.format(set_type, class_name)) as f:
                str_rendered_pose_list = [
                    x.strip().split(' ') for x in f.readlines()
                ]
            rendered_pose_list = np.array(
                [[float(x) for x in each_pose]
                 for each_pose in str_rendered_pose_list])
            rendered_per_real = 1
            assert (len(rendered_pose_list) == 1*len(all_real_list)), \
                  '{} vs {}'.format(len(rendered_pose_list), len(all_real_list))
            for idx, real_index in enumerate(tqdm(all_real_list)):
                video_name, real_prefix = real_index.split('/')
                rendered_dir = os.path.join(rendered_root_dir, class_name)
                mkdir_if_missing(rendered_dir)
                for inner_idx in range(rendered_per_real):
                    if gen_images:
                        image_file = os.path.join(
                            rendered_dir,
                            '{}_{}-color.png'.format(real_prefix, inner_idx))
                        depth_file = os.path.join(
                            rendered_dir,
                            '{}_{}-depth.png'.format(real_prefix, inner_idx))
                        rendered_idx = idx * rendered_per_real + inner_idx
                        pose_rendered_q = rendered_pose_list[rendered_idx]

                        rgb_gl, depth_gl = render_machine.render(
                            pose_rendered_q[:4], pose_rendered_q[4:])
                        rgb_gl = rgb_gl.astype('uint8')

                        depth_gl = (depth_gl * depth_factor).astype(np.uint16)

                        cv2.imwrite(image_file, rgb_gl)
                        cv2.imwrite(depth_file, depth_gl)

                        pose_rendered_file = os.path.join(
                            rendered_dir,
                            '{}_{}-pose.txt'.format(real_prefix, inner_idx))
                        text_file = open(pose_rendered_file, 'w')
                        text_file.write("{}\n".format(class_idx))
                        pose_rendered_m = np.zeros((3, 4))
                        pose_rendered_m[:, :3] = RT_transform.quat2mat(
                            pose_rendered_q[:4])
                        pose_rendered_m[:, 3] = pose_rendered_q[4:]
                        pose_ori_m = pose_rendered_m
                        pose_str = "{} {} {} {}\n{} {} {} {}\n{} {} {} {}"\
                            .format(pose_ori_m[0, 0], pose_ori_m[0, 1], pose_ori_m[0, 2], pose_ori_m[0, 3],
                                    pose_ori_m[1, 0], pose_ori_m[1, 1], pose_ori_m[1, 2], pose_ori_m[1, 3],
                                    pose_ori_m[2, 0], pose_ori_m[2, 1], pose_ori_m[2, 2], pose_ori_m[2, 3])
                        text_file.write(pose_str)

                    if real_index in test_real_list:
                        if inner_idx == 0:
                            val_pair.append("{} {}/{}_{}".format(
                                real_index, class_name, real_prefix,
                                inner_idx))

            test_pair_set_file = os.path.join(
                pair_set_dir, "my_val_{}.txt".format(class_name))
            val_pair.pose_est
            with open(test_pair_set_file, "w") as text_file:
                for x in val_pair:
                    text_file.write("{}\n".format(x))
        print(class_name, " done")
コード例 #8
0
def main():
    gen_images = True
    for class_idx, class_name in enumerate(tqdm(classes)):
        train_pair = []
        print("start ", class_name)
        if class_name in ["__back_ground__"]:
            continue

        if gen_images:
            # init render machine
            model_dir = os.path.join(
                cur_path,
                "../data/LINEMOD_6D/LM6d_converted/models/{}".format(
                    class_name),
            )
            render_machine = Render_Py(model_dir, K, width, height, ZNEAR,
                                       ZFAR)

        for set_type in ["NDtrain"]:
            # observed index list
            observed_list_path = os.path.join(
                observed_set_dir, "NDtrain_observed_{}.txt".format(class_name))
            with open(observed_list_path, "r") as f:
                observed_list = [x.strip() for x in f.readlines()]

            # rendered poses
            rendered_pose_path = os.path.join(
                rendered_pose_dir,
                "LM6d_occ_dsm_{}_NDtrain_rendered_pose_{}.txt".format(
                    version, class_name),
            )
            with open(rendered_pose_path, "r") as f:
                str_rendered_pose_list = [
                    x.strip().split(" ") for x in f.readlines()
                ]
            rendered_pose_list = np.array(
                [[float(x) for x in each_pose]
                 for each_pose in str_rendered_pose_list])

            rendered_per_observed = 1
            assert len(rendered_pose_list
                       ) == 1 * len(observed_list), "{} vs {}".format(
                           len(rendered_pose_list), len(observed_list))

            for idx, observed_index in enumerate(tqdm(observed_list)):
                video_name, observed_prefix = observed_index.split(
                    "/")  # ./prefix
                rendered_dir = os.path.join(rendered_root_dir, video_name)
                mkdir_if_missing(rendered_dir)
                rendered_dir = os.path.join(rendered_dir, class_name)
                mkdir_if_missing(rendered_dir)

                for inner_idx in range(rendered_per_observed):
                    if gen_images:
                        image_file = os.path.join(
                            rendered_dir,
                            "{}_{}-color.png".format(observed_prefix,
                                                     inner_idx),
                        )
                        depth_file = os.path.join(
                            rendered_dir,
                            "{}_{}-depth.png".format(observed_prefix,
                                                     inner_idx),
                        )
                        # if os.path.exists(image_file) and os.path.exists(depth_file):
                        #     continue
                        rendered_idx = idx * rendered_per_observed + inner_idx
                        pose_rendered_q = rendered_pose_list[rendered_idx]

                        rgb_gl, depth_gl = render_machine.render(
                            pose_rendered_q[:4], pose_rendered_q[4:])
                        rgb_gl = rgb_gl.astype("uint8")

                        depth_gl = (depth_gl * depth_factor).astype(np.uint16)

                        cv2.imwrite(image_file, rgb_gl)
                        cv2.imwrite(depth_file, depth_gl)

                        pose_rendered_file = os.path.join(
                            rendered_dir,
                            "{}_{}-pose.txt".format(observed_prefix,
                                                    inner_idx),
                        )
                        text_file = open(pose_rendered_file, "w")
                        text_file.write("{}\n".format(class2idx(class_name)))
                        pose_rendered_m = np.zeros((3, 4))
                        pose_rendered_m[:, :3] = se3.quat2mat(
                            pose_rendered_q[:4])
                        pose_rendered_m[:, 3] = pose_rendered_q[4:]
                        pose_ori_m = pose_rendered_m
                        pose_str = "{} {} {} {}\n{} {} {} {}\n{} {} {} {}".format(
                            pose_ori_m[0, 0],
                            pose_ori_m[0, 1],
                            pose_ori_m[0, 2],
                            pose_ori_m[0, 3],
                            pose_ori_m[1, 0],
                            pose_ori_m[1, 1],
                            pose_ori_m[1, 2],
                            pose_ori_m[1, 3],
                            pose_ori_m[2, 0],
                            pose_ori_m[2, 1],
                            pose_ori_m[2, 2],
                            pose_ori_m[2, 3],
                        )
                        text_file.write(pose_str)

                    train_pair.append("{} {}/{}_{}".format(
                        observed_index, class_name, observed_prefix,
                        inner_idx))

            pair_set_file = os.path.join(image_set_dir,
                                         "train_{}.txt".format(class_name))
            train_pair = sorted(train_pair)
            with open(pair_set_file, "w") as text_file:
                for x in train_pair:
                    text_file.write("{}\n".format(x))

        print(class_name, " done")
コード例 #9
0
def gen_gt_observed():
    with open(syn_poses_path, "rb") as f:
        syn_pose_dict = cPickle.load(f)

    for class_idx, class_name in enumerate(classes):
        if class_name == "__back_ground__":
            continue
        # uncomment here to only generate data for ape
        # if class_name not in ['ape']:
        #     continue

        # init render machines
        # brightness_ratios = [0.2, 0.25, 0.3, 0.35, 0.4] ###################
        model_dir = os.path.join(LINEMOD_syn_root,
                                 "models/{}".format(class_name))
        render_machine = Render_Py(model_dir, K, width, height, ZNEAR, ZFAR)

        # syn_poses_path = os.path.join(syn_poses_dir, 'LM6d_v1_all_rendered_pose_{}.txt'.format(class_name))
        # syn_poses = np.loadtxt(syn_poses_path)
        # print(syn_poses.shape) # nx7
        syn_poses = syn_pose_dict[class_name]
        num_poses = syn_poses.shape[0]
        observed_index_list = [
            "{}/{:06d}".format(class_name, i + 1) for i in range(num_poses)
        ]

        # observed_set_path = os.path.join(
        #     image_set_dir,
        #     'observed/LM_data_syn_train_observed_{}.txt'.format(class_name))
        # mkdir_if_missing(os.path.join(image_set_dir, 'observed'))
        # f_observed_set = open(observed_set_path, 'w')

        for idx, observed_index in enumerate(tqdm(observed_index_list)):
            # f_observed_set.write('{}\n'.format(observed_index))
            # continue # just generate observed set file
            prefix = observed_index.split("/")[1]

            gt_observed_dir = os.path.join(gt_observed_root_dir, class_name)
            mkdir_if_missing(gt_observed_dir)

            gt_observed_color_file = os.path.join(gt_observed_dir,
                                                  prefix + "-color.png")
            gt_observed_depth_file = os.path.join(gt_observed_dir,
                                                  prefix + "-depth.png")
            gt_observed_pose_file = os.path.join(gt_observed_dir,
                                                 prefix + "-pose.txt")

            # observed_label_file = os.path.join(observed_root_dir, video_name, prefix + "-label.png")
            gt_observed_label_file = os.path.join(gt_observed_dir,
                                                  prefix + "-label.png")

            pose_quat = syn_poses[idx, :]
            pose = se3.se3_q2m(pose_quat)

            # generate random light_position
            if idx % 6 == 0:
                light_position = [1, 0, 1]
            elif idx % 6 == 1:
                light_position = [1, 1, 1]
            elif idx % 6 == 2:
                light_position = [0, 1, 1]
            elif idx % 6 == 3:
                light_position = [-1, 1, 1]
            elif idx % 6 == 4:
                light_position = [-1, 0, 1]
            elif idx % 6 == 5:
                light_position = [0, 0, 1]
            else:
                raise Exception("???")
            # print( "light_position a: {}".format(light_position))
            light_position = np.array(light_position) * 0.5
            # inverse yz
            light_position[0] += pose[0, 3]
            light_position[1] -= pose[1, 3]
            light_position[2] -= pose[2, 3]
            # print("light_position b: {}".format(light_position))

            # get render result
            rgb_gl, depth_gl = render_machine.render(pose[:3, :3],
                                                     pose[:, 3],
                                                     r_type="mat")
            rgb_gl = rgb_gl.astype("uint8")
            # gt_observed label
            label_gl = np.zeros(depth_gl.shape)
            # print('depth gl:', depth_gl.shape)
            label_gl[depth_gl != 0] = 1

            cv2.imwrite(gt_observed_color_file, rgb_gl)
            depth_gl = (depth_gl * depth_factor).astype(np.uint16)
            cv2.imwrite(gt_observed_depth_file, depth_gl)

            cv2.imwrite(gt_observed_label_file, label_gl)

            text_file = open(gt_observed_pose_file, "w")
            text_file.write("{}\n".format(class_idx))
            pose_str = "{} {} {} {}\n{} {} {} {}\n{} {} {} {}".format(
                pose[0, 0],
                pose[0, 1],
                pose[0, 2],
                pose[0, 3],
                pose[1, 0],
                pose[1, 1],
                pose[1, 2],
                pose[1, 3],
                pose[2, 0],
                pose[2, 1],
                pose[2, 2],
                pose[2, 3],
            )
            text_file.write(pose_str)

        print(class_name, " done")
コード例 #10
0
def main():
    gen_images = (
        True
    )  ##################################################################### gen_images
    for class_idx, class_name in enumerate(class_list):
        train_pair = []
        # val_pair = []
        if class_name in ["__back_ground__"]:
            continue
        if not class_name in sel_classes:
            continue
        print("start ", class_name)

        if gen_images:
            # init render
            model_dir = os.path.join(TLESS_root, "models", class_name)
            render_machine = Render_Py(model_dir, K, width, height, ZNEAR,
                                       ZFAR)

        for set_type in ["train"]:
            with open(
                    os.path.join(real_set_root,
                                 "{}_{}.txt".format(class_name, "train")),
                    "r",
            ) as f:
                train_real_list = [x.strip() for x in f.readlines()]

            with open(rendered_pose_path.format(set_type, class_name)) as f:
                str_rendered_pose_list = [
                    x.strip().split(" ") for x in f.readlines()
                ]
            rendered_pose_list = np.array(
                [[float(x) for x in each_pose]
                 for each_pose in str_rendered_pose_list])
            rendered_per_real = 10
            assert len(rendered_pose_list) == rendered_per_real * len(
                train_real_list), "{} vs {}".format(len(rendered_pose_list),
                                                    len(train_real_list))
            for idx, real_index in enumerate(tqdm(train_real_list)):
                video_name, real_prefix = real_index.split("/")
                rendered_dir = os.path.join(rendered_root_dir, class_name)
                mkdir_if_missing(rendered_dir)
                for inner_idx in range(rendered_per_real):
                    if gen_images:
                        # if gen_images and real_index in test_real_list and inner_idx == 0: # only generate my_val_v{}
                        image_file = os.path.join(
                            rendered_dir,
                            "{}_{}-color.png".format(real_prefix, inner_idx),
                        )
                        depth_file = os.path.join(
                            rendered_dir,
                            "{}_{}-depth.png".format(real_prefix, inner_idx),
                        )

                        rendered_idx = idx * rendered_per_real + inner_idx
                        pose_rendered_q = rendered_pose_list[rendered_idx]

                        rgb_gl, depth_gl = render_machine.render(
                            pose_rendered_q[:4], pose_rendered_q[4:])
                        rgb_gl = rgb_gl.astype("uint8")

                        depth_gl = (depth_gl * depth_factor).astype(np.uint16)

                        cv2.imwrite(image_file, rgb_gl)
                        cv2.imwrite(depth_file, depth_gl)

                        pose_rendered_file = os.path.join(
                            rendered_dir,
                            "{}_{}-pose.txt".format(real_prefix, inner_idx),
                        )
                        text_file = open(pose_rendered_file, "w")
                        text_file.write("{}\n".format(class_idx))
                        pose_rendered_m = np.zeros((3, 4))
                        pose_rendered_m[:, :3] = se3.quat2mat(
                            pose_rendered_q[:4])
                        pose_rendered_m[:, 3] = pose_rendered_q[4:]
                        pose_ori_m = pose_rendered_m
                        pose_str = "{} {} {} {}\n{} {} {} {}\n{} {} {} {}".format(
                            pose_ori_m[0, 0],
                            pose_ori_m[0, 1],
                            pose_ori_m[0, 2],
                            pose_ori_m[0, 3],
                            pose_ori_m[1, 0],
                            pose_ori_m[1, 1],
                            pose_ori_m[1, 2],
                            pose_ori_m[1, 3],
                            pose_ori_m[2, 0],
                            pose_ori_m[2, 1],
                            pose_ori_m[2, 2],
                            pose_ori_m[2, 3],
                        )
                        text_file.write(pose_str)

                    train_pair.append("{} {}/{}_{}".format(
                        real_index, class_name, real_prefix, inner_idx))

            train_pair_set_file = os.path.join(
                pair_set_dir, "train_{}_{}.txt".format(version, class_name))
            train_pair = sorted(train_pair)
            with open(train_pair_set_file, "w") as text_file:
                for x in train_pair:
                    text_file.write("{}\n".format(x))

        print(class_name, " done")
コード例 #11
0
def main(camera_params, env_params):
    width = camera_params['camera_width']
    height = camera_params['camera_height']
    K = np.array([[camera_params['camera_fx'], 0, camera_params['camera_cx']], [0, camera_params['camera_fy'], camera_params['camera_cy']], [0, 0, 1]])
    ZNEAR = camera_params['camera_znear']
    ZFAR = camera_params['camera_zfar']
    depth_factor = 1000
    x_min = float(env_params['x_min'])
    x_max = float(env_params['x_max']);
    y_min = float(env_params['y_min']);
    y_max = float(env_params['y_max']);
    table_height = float(env_params['table_height']);
    gen_images = True
    pose_from_file = False
    print("Camera Matrix:")
    print(K)
#    camera_pose = np.array([ \
#                      [0.868216,  6.3268e-06,     0.496186,     0.436202], \
#                    [-5.49302e-06,            1, -3.13929e-06,    0.0174911], \
#                     [-0.496186,  2.74908e-11,     0.868216,     0.709983], \
#                             [0,            0,            0,            1]])
    # Camera to world transform
#    camera_pose = np.array([  \
#                            [0.0068906 ,  -0.497786,    0.867272 ,   0.435696], \
#                            [-0.999953,   0.0024452,  0.00934823,   0.0323318], \
#                            [-0.00677407,   -0.867296,   -0.497746,    0.710332], \
#                            [0,           0,           0,           1]])
    camera_pose = np.array([  \
                            [0.00572327,   -0.629604,    0.776895,    0.437408], \
                            [-0.999953,  0.00244603,   0.0093488,   0.0323317], \
                            [-0.00778635,   -0.776912,   -0.629561,    0.709281], \
                            [0,           0,           0,           1]])

#
#    camera_pose = np.array([  \
#                            [0.778076,   6.3268e-06,     0.628171,      0.43785], \
#                            [-4.92271e-06,            1, -3.97433e-06,    0.0174995], \
#                            [   -0.628171,  2.70497e-11,     0.778076,     0.708856], \
#                            [           0,            0,            0,            1]])

#    cam_to_body = np.array([[ 0, 0, 1, 0],
#                            [-1, 0, 0, 0],
#                            [0, -1, 0, 0],
#                            [0, 0, 0, 1]]);
    for class_idx, class_name in idx2class.items():

        print("start ", class_idx, class_name)
        if class_name in ["__back_ground__"]:
            continue

        if gen_images:
            # init render
#            model_dir = os.path.join(LM6d_root, "aligned_cm", class_name, "google_16k")
            model_dir = os.path.join(LM6d_root, "models", class_name)
            render_machine = Render_Py(model_dir, K, width, height, ZNEAR, ZFAR)

        for set_type in ["all"]:

            rendered_pose_list = []

            # For reading in Perch
            rendered_pose_list_out = []
            if pose_from_file:
                with open(rendered_pose_path.format(set_type, class_name)) as f:
                    str_rendered_pose_list = [x.strip().split(" ") for x in f.readlines()]
                rendered_pose_list = np.array(
                    [[float(x) for x in each_pose] for each_pose in str_rendered_pose_list]
                )
            else:
                for x in np.arange(x_min, x_max, float(env_params['search_resolution_translation'])):
                    for y in np.arange(y_min, y_max, float(env_params['search_resolution_translation'])):
                        for theta in np.arange(0, 2 * np.pi, float(env_params['search_resolution_yaw'])):
                            original_point = np.array([[x], [y], [table_height], [1]])
                            if class_name == "004_sugar_box":
                                # Add half the height of box to shift it up
                                point = np.array([[x], [y], [table_height+0.086], [1]])
                            if class_name == "035_power_drill":
                                point = np.array([[x], [y], [table_height], [1]])

#                            transformed_point = np.matmul(np.linalg.inv(camera_pose), point)
#                            transformed_rotation = np.matmul(np.linalg.inv(camera_pose[0:3, 0:3]), RT_transform.euler2mat(0,0,theta))
#                            transformed_rotation = np.linalg.inv(camera_pose)[0:3, 0:3]
#                            transformed_rotation = RT_transform.euler2mat(0,0,0)
#                            print(transformed_point)
                            object_world_transform = np.zeros((4,4))
                            if class_name == "004_sugar_box":
                                object_world_transform[:3,:3] = RT_transform.euler2mat(0,0,theta)
                            if class_name == "035_power_drill":
                                object_world_transform[:3,:3] = RT_transform.euler2mat(np.pi/2,0,theta)

                            object_world_transform[:4,3] = point.flatten()
#                            print(world_object_transform)

                            # First apply world to object transform on the object and then take it to camera frame
                            total_transform = np.matmul(np.linalg.inv(camera_pose), object_world_transform)
                            print(total_transform)

                            pose = RT_transform.mat2quat(total_transform[:3,:3]).tolist() + total_transform[:3,3].flatten().tolist()

#                            pose = RT_transform.mat2quat(transformed_rotation).tolist() + transformed_point.flatten()[0:3].tolist()
                            print(pose)
                            rendered_pose_list.append(pose)
                            # rendered_pose_list_out.append(point.flatten().tolist() + [0,0,theta])
                            rendered_pose_list_out.append(original_point.flatten().tolist() + [0,0,theta])

            rendered_pose_list = np.array(rendered_pose_list)
            rendered_pose_list_out = np.array(rendered_pose_list_out)
            for idx, observed_pose in enumerate(tqdm(rendered_pose_list)):
#                print(idx)
#                print(observed_pose)
                rendered_dir = os.path.join(rendered_root_dir, class_name)
                mkdir_if_missing(rendered_dir)
                if gen_images:
                    image_file = os.path.join(
                        rendered_dir,
                        "{}-color.png".format(idx),
                    )
                    depth_file = os.path.join(
                        rendered_dir,
                        "{}-depth.png".format(idx),
                    )
                    pose_rendered_q = observed_pose
#                    print(pose_rendered_q[4:])
                    rgb_gl, depth_gl = render_machine.render(
                        pose_rendered_q[:4], pose_rendered_q[4:]
                    )
                    rgb_gl = rgb_gl.astype("uint8")

                    depth_gl = (depth_gl * depth_factor).astype(np.uint16)

                    cv2.imwrite(image_file, rgb_gl)
                    cv2.imwrite(depth_file, depth_gl)

#                    pose_rendered_file = os.path.join(
#                        rendered_dir,
#                        "{}-pose.txt".format(idx),
#                    )
#                    text_file = open(pose_rendered_file, "w")
#                    text_file.write("{}\n".format(class_idx))
#                    pose_rendered_m = np.zeros((3, 4))
#                    pose_rendered_m[:, :3] = RT_transform.quat2mat(
#                        pose_rendered_q[:4]
#                    )
#                    pose_rendered_m[:, 3] = pose_rendered_q[4:]
#                    pose_ori_m = pose_rendered_m
#                    pose_str = "{} {} {} {}\n{} {} {} {}\n{} {} {} {}".format(
#                        pose_ori_m[0, 0],
#                        pose_ori_m[0, 1],
#                        pose_ori_m[0, 2],
#                        pose_ori_m[0, 3],
#                        pose_ori_m[1, 0],
#                        pose_ori_m[1, 1],
#                        pose_ori_m[1, 2],
#                        pose_ori_m[1, 3],
#                        pose_ori_m[2, 0],
#                        pose_ori_m[2, 1],
#                        pose_ori_m[2, 2],
#                        pose_ori_m[2, 3],
#                    )
#                    text_file.write(pose_str)
                pose_rendered_file = os.path.join(
                    rendered_dir,
                    "poses.txt",
                )
                np.savetxt(pose_rendered_file, np.around(rendered_pose_list_out, 4))
#                text_file = open(pose_rendered_file, "w")
#                text_file.write(rendered_pose_list)
        print(class_name, " done")
コード例 #12
0
def main():
    for cls_idx, cls_name in enumerate(tqdm(sel_classes)):
        print(cls_idx, cls_name)
        keyframe_path = os.path.join(
            observed_set_dir, "train_observed_{}.txt".format(cls_name)
        )
        with open(keyframe_path) as f:
            observed_index_list = [x.strip() for x in f.readlines()]
        video_name_list = [x.split("/")[0] for x in observed_index_list]
        observed_prefix_list = [x.split("/")[1] for x in observed_index_list]

        # init renderer
        model_dir = os.path.join(model_root, cls_name)
        render_machine = Render_Py(model_dir, K, width, height, ZNEAR, ZFAR)

        for idx, observed_index in enumerate(tqdm(observed_index_list)):
            prefix = observed_prefix_list[idx]
            video_name = video_name_list[idx]

            gt_observed_dir = os.path.join(gt_observed_root_dir, cls_name)
            mkdir_if_missing(gt_observed_dir)
            gt_observed_dir = os.path.join(gt_observed_dir, video_name)  # ./
            mkdir_if_missing(gt_observed_dir)

            # to be written
            gt_observed_color_file = os.path.join(
                gt_observed_dir, prefix + "-color.png"
            )
            gt_observed_depth_file = os.path.join(
                gt_observed_dir, prefix + "-depth.png"
            )
            gt_observed_pose_file = os.path.join(gt_observed_dir, prefix + "-pose.txt")

            gt_observed_label_file = os.path.join(
                gt_observed_dir, prefix + "-label.png"
            )

            observed_pose_file = os.path.join(
                observed_root_dir, video_name, prefix + "-poses.npy"
            )
            observed_poses = np.load(observed_pose_file)
            observed_pose_dict = observed_poses.all()
            # pprint(observed_pose_dict)
            if cls_name not in observed_pose_dict.keys():
                continue
            pose = observed_pose_dict[cls_name]
            rgb_gl, depth_gl = render_machine.render(
                RT_transform.mat2quat(pose[:3, :3]), pose[:, -1]
            )

            rgb_gl = rgb_gl.astype("uint8")

            label_gl = np.zeros(depth_gl.shape)
            label_gl[depth_gl != 0] = 1

            depth_gl = depth_gl * depth_factor
            depth_gl = depth_gl.astype("uint16")

            # write results
            cv2.imwrite(gt_observed_color_file, rgb_gl)
            cv2.imwrite(gt_observed_depth_file, depth_gl)
            cv2.imwrite(gt_observed_label_file, label_gl)

            text_file = open(gt_observed_pose_file, "w")
            text_file.write("{}\n".format(cls_idx))
            pose_str = "{} {} {} {}\n{} {} {} {}\n{} {} {} {}".format(
                pose[0, 0],
                pose[0, 1],
                pose[0, 2],
                pose[0, 3],
                pose[1, 0],
                pose[1, 1],
                pose[1, 2],
                pose[1, 3],
                pose[2, 0],
                pose[2, 1],
                pose[2, 2],
                pose[2, 3],
            )
            text_file.write(pose_str)

        print(cls_name, " done")
コード例 #13
0
    q = np.zeros(4)
    q[0] = np.cos(0.5 * angle)
    q[1:] = np.sin(0.5 * angle) * rot_axis
    if q[0] < 0:
        q *= -1
    # print('norm of q: ', LA.norm(q))
    q = q / LA.norm(q)
    # print('norm of q: ', LA.norm(q))
    return q


if __name__ == "__main__":
    cls_name = 'bowl'
    model_folder = './data/LINEMOD_6D/models/{}'.format(cls_name)
    print('init render machine...')
    render_machine = Render_Py(model_folder, K, width, height, zNear, zFar)

    def rotate(angle, rot_axis, pose_gt, p_center=np.array([0,0,0])):
        rot_sym_q = angle_axis_to_quat(angle, rot_axis)
        rot_sym_m = quat2mat(rot_sym_q)

        # print(rot_sym_m)
        rot_res = R_transform(pose_gt[:3, :3], rot_sym_m, rot_coord='model')
        rot_res_q = mat2quat(rot_res)

        rgb_gl, depth_gl = render_machine.render(rot_res_q, pose_gt[:, 3] + p_center)
        rgb_gl = rgb_gl.astype('uint8')
        return rgb_gl, depth_gl

    pose_gt = np.loadtxt('./data/LM6d_render_v1/data/render_real/bowl/000001-pose.txt',
                         skiprows=1)
コード例 #14
0
def gen_render_real():
    syn_poses_dir = os.path.join(cur_path, '../data/LINEMOD_6D/LM6d_converted/LM6d_render_v1/syn_poses_single/')

    # output path
    render_real_root_dir = os.path.join(LINEMOD_root, 'LM6d_data_syn_light', 'data', 'render_real')
    image_set_dir = os.path.join(LINEMOD_root, 'LM6d_data_syn_light/image_set')
    mkdir_if_missing(render_real_root_dir)
    mkdir_if_missing(image_set_dir)

    syn_poses_path = os.path.join(syn_poses_dir, 'LM6d_ds_v1_all_syn_pose.pkl')
    with open(syn_poses_path, 'rb') as f:
        syn_pose_dict = cPickle.load(f)

    for class_idx, class_name in enumerate(tqdm(classes)):
        if class_name == '__back_ground__':
            continue
        if class_name not in ['ape']:
            continue

        # init render machines
        # brightness_ratios = [0.2, 0.25, 0.3, 0.35, 0.4] ###################
        model_dir = os.path.join(LINEMOD_root, 'models/{}'.format(class_name))
        render_machine = Render_Py(model_dir, K, width, height, ZNEAR, ZFAR)

        # syn_poses_path = os.path.join(syn_poses_dir, 'LM6d_v1_all_rendered_pose_{}.txt'.format(class_name))
        # syn_poses = np.loadtxt(syn_poses_path)
        # print(syn_poses.shape) # nx7
        syn_poses = syn_pose_dict[class_name]
        num_poses = syn_poses.shape[0]
        real_index_list = ['{}/{:06d}'.format(class_name, i+1) for i in range(num_poses)]

        # real_set_path = os.path.join(image_set_dir, 'real/LM_data_syn_train_real_{}.txt'.format(class_name))
        # mkdir_if_missing(os.path.join(image_set_dir, 'real'))
        # f_real_set = open(real_set_path, 'w')

        all_pair = []
        for idx, real_index in enumerate(real_index_list):
            # f_real_set.write('{}\n'.format(real_index))
            # continue # just generate real set file
            prefix = real_index.split('/')[1]
            video_name = real_index.split('/')[0]

            render_real_dir = os.path.join(render_real_root_dir, class_name)
            mkdir_if_missing(render_real_dir)


            render_real_color_file = os.path.join(render_real_dir, prefix+"-color.png")
            render_real_depth_file = os.path.join(render_real_dir, prefix+"-depth.png")
            render_real_pose_file = os.path.join(render_real_dir, prefix+"-pose.txt")

            # real_label_file = os.path.join(real_root_dir, video_name, prefix + "-label.png")
            render_real_label_file = os.path.join(render_real_dir, prefix + "-label.png")

            if idx % 500 == 0:
                print('  ', class_name, idx, '/', len(real_index_list), ' ', real_index)

            pose_quat = syn_poses[idx, :]
            pose = se3.se3_q2m(pose_quat)

            # generate random light_position
            if idx%6 == 0:
                light_position = [1, 0, 1]
            elif idx%6 == 1:
                light_position = [1, 1, 1]
            elif idx%6 == 2:
                light_position = [0, 1, 1]
            elif idx%6 == 3:
                light_position = [-1, 1, 1]
            elif idx%6 == 4:
                light_position = [-1, 0, 1]
            elif idx%6 == 5:
                light_position = [0, 0, 1]
            else:
                raise Exception("???")
            # print( "light_position a: {}".format(light_position))
            light_position=np.array(light_position)*0.5
            # inverse yz
            light_position[0] += pose[0, 3]
            light_position[1] -= pose[1, 3]
            light_position[2] -= pose[2, 3]
            # print("light_position b: {}".format(light_position))

            # randomly adjust color and intensity for light_intensity
            colors = np.array([[0, 0, 1],
                               [0, 1, 0],
                               [0, 1, 1],
                               [1, 0, 0],
                               [1, 0, 1],
                               [1, 1, 0],
                               [1, 1, 1]])
            intensity = np.random.uniform(0.9, 1.1, size=(3,))
            colors_randk = random.randint(0, colors.shape[0] - 1)
            light_intensity = colors[colors_randk] * intensity
            # print('light intensity: ', light_intensity)



            # print('brightness ratio:', brightness_ratios[rm_randk])
            # get render result
            rgb_gl, depth_gl = render_machine.render(pose[:3, :3], pose[:, 3], r_type='mat')
            rgb_gl = rgb_gl.astype('uint8')
            # render_real label
            label_gl = np.zeros(depth_gl.shape)
            # print('depth gl:', depth_gl.shape)
            label_gl[depth_gl!=0] = 1


            # import matplotlib.pyplot as plt
            # fig = plt.figure()
            # plt.axis('off')
            # fig.add_subplot(1, 3, 1)
            # plt.imshow(rgb_gl[:, :, [2,1,0]])
            #
            # fig.add_subplot(1, 3, 2)
            # plt.imshow(depth_gl)
            #
            # fig.add_subplot(1, 3, 3)
            # plt.imshow(label_gl)
            #
            # fig.suptitle('light position: {}\n light_intensity: {}\n brightness: {}'.format(light_position, light_intensity, brightness_ratios[rm_randk]))
            # plt.show()


            cv2.imwrite(render_real_color_file, rgb_gl)
            depth_gl = (depth_gl * depth_factor).astype(np.uint16)
            cv2.imwrite(render_real_depth_file, depth_gl)

            cv2.imwrite(render_real_label_file, label_gl)

            text_file = open(render_real_pose_file, 'w')
            text_file.write("{}\n".format(class_idx))
            pose_str = "{} {} {} {}\n{} {} {} {}\n{} {} {} {}" \
                .format(pose[0, 0], pose[0, 1], pose[0, 2], pose[0, 3],
                        pose[1, 0], pose[1, 1], pose[1, 2], pose[1, 3],
                        pose[2, 0], pose[2, 1], pose[2, 2], pose[2, 3])
            text_file.write(pose_str)

        print(class_name, " done")