コード例 #1
0
def integration_process(folder_path, preProcData):
    file_names = File_names()
    results_folder = file_names.get_results_folder_name()
    results_path = os.path.join(folder_path, results_folder)

    #	Source field
    run_surface_integral = False
    run_biot_savart = True
    run_VS = False

    #%% Instances and geral definitions
    global_variables = GlobalVariables()
    error = Errors()
    operations = Operations()
    materials_lib = get_materials_lib()
    vacuum = Vacuum()
    get_gauss_points_class = GaussPoints()
    shape_functions = ShapeFuncions()
    operations = Operations()

    str_noflux_face = global_variables.str_noflux_face
    results_folder = file_names.get_results_folder_name()

    face = Face()
    #------------------------------------------------------------------------------
    # Setup
    regions_material = preProcData.RegionMaterial
    regions_excitation = preProcData.RegionExcitation
    boundary = preProcData.BC
    external_reluctances = preProcData.ExternalReluctances
    coupling = preProcData.CoupNet

    #------------------------------------------------------------------------------
    # Mesh
    mesh_data = preProcData.MeshData
    all_elem_nodes_3D = mesh_data.ElemNodes
    nodes_coordenates = mesh_data.NodesCoordenates
    elem_tags = mesh_data.ElemTags
    elem_type = mesh_data.ElemType

    #%% Get 2D and 3D elements, with their materials name
    elem_2D_ID = list()
    elem_type_3D = list()
    elem_nodes_3D = list()
    elem_tags_3D = list()
    region_ID_list_3D = list()
    number_elements_2D = 0

    for counter, each_elem in enumerate(all_elem_nodes_3D):
        this_elem_type = elem_type[counter]
        if this_elem_type < 4:
            elem_2D_ID.append(counter)
            number_elements_2D += 1
        else:
            elem_nodes_3D.append(each_elem)
            elem_type_3D.append(elem_type[counter])
            elem_tags_3D.append(elem_tags[counter])

            find = False
            for each_region in regions_material:
                if each_region.RegionNumber == elem_tags[counter][0]:
                    region_ID_list_3D.append(each_region.MaterialName)
                    find = True
            if not find:
                error.physical_surface_not_defined(
                    str(each_region.RegionNumber), elem_tags[counter][0])

    number_elements = len(elem_nodes_3D)
    number_nodes = len(nodes_coordenates)
    faces_ID = list()
    faces_list = list()
    plot_test_coord = list()
    plot_test_field = list()

    #%%Get source field
    field_solution = list()
    run_permanent_magnets = False

    #	Run Permanent Magnets
    for each_region in regions_material:
        for each in materials_lib[each_region.MaterialName].Hc:
            if each != 0.0:
                permanent_magnets.run_permanent_magnets(
                    preProcData, folder_path)
                run_permanent_magnets = True
                break

    #Read the fields
    if run_biot_savart or run_permanent_magnets:

        results_folder = file_names.get_results_folder_name()
        folder_name = os.path.join(folder_path, results_folder)

        #Gauss points IDs
        this_file_name = file_names.get_Gauss_points_ID_file_name()
        full_path = os.path.join(folder_name, this_file_name)
        points_IDs = np.genfromtxt(full_path,
                                   delimiter=' ',
                                   dtype='int',
                                   usecols=(1, 2, 3, 4))
        points_ID_elem_all = np.genfromtxt(full_path,
                                           delimiter=' ',
                                           dtype='int',
                                           usecols=(0))
        points_ID_elem = points_ID_elem_all - number_elements_2D
        points_ID_elem = points_ID_elem.tolist()
        points_ID_elem_all = points_ID_elem_all.tolist()

        #		Gauss points coordinates
        this_file_name = file_names.get_Gauss_points_coordinates_file_name()
        full_path = os.path.join(folder_name, this_file_name)
        coordinates = np.genfromtxt(full_path, delimiter=' ', dtype='double')

        #		Fields
        this_file_name = file_names.get_Gauss_points_H_field_file_name()
        #		this_file_name="H_source_FFEM.txt"

        full_path = os.path.join(folder_name, this_file_name)
        fields = np.genfromtxt(full_path, delimiter=' ', dtype='double')

        for elem_counter in range(0, number_elements):
            this_elem_type = elem_type_3D[elem_counter]
            gauss_points = get_gauss_points_class.get_gauss_points(
                this_elem_type)
            number_integ_points = len(
                get_gauss_points_class.get_gauss_points(this_elem_type))
            this_points_field = list()

            if elem_counter in points_ID_elem:

                this_elem = points_ID_elem.index(elem_counter)
                for k in points_IDs[this_elem].tolist():
                    Hxy = np.zeros((3, 1))
                    Hxy[0, 0] = fields[k, 0]
                    Hxy[1, 0] = fields[k, 1]
                    Hxy[2, 0] = fields[k, 2]
                    this_points_field.append(Hxy)

            else:
                for k in xrange(number_integ_points):
                    Hxy = np.zeros((3, 1))
                    this_points_field.append(Hxy)
            field_solution.append(this_points_field)

    run_external_circuit = False
    if len(coupling) > 0:
        run_external_circuit = True

#%%Creates the face list
    print_message("Creating faces list")
    for elem_counter in range(0, number_elements):
        number_local_faces = shape_functions.get_number_faces(this_elem_type)
        this_elem_type = elem_type_3D[elem_counter]
        this_element_nodes = elem_nodes_3D[elem_counter]
        faces_nodes_ID = shape_functions.get_nodes_ID_2_face(this_elem_type)
        number_faces, nodes_per_face = faces_nodes_ID.shape
        local_faces_ID = list()
        for local_face_counter in range(0, number_faces):
            nodes_list = list()
            for node_counter in range(nodes_per_face):
                node_ID = faces_nodes_ID[local_face_counter, node_counter]
                nodes_list.append(this_element_nodes[node_ID])
            local_faces_ID.append(
                face.add_to_list(nodes_list, elem_counter, faces_list))
        faces_ID.append(local_faces_ID)
    print_message("Creating faces list - Done")

    #%%Integration
    print_message("Integration process")

    num_meshed_rel = len(faces_list)
    num_non_meshed_rel = len(external_reluctances)
    num_total_rel = num_meshed_rel + num_non_meshed_rel

    #sparse matrix
    cols_rel_sparse = list()
    rows_rel_sparse = list()

    #reluctance matrix
    diagonal = list()
    for each_element_faces in faces_ID:
        numbre_faces_this_element = len(each_element_faces)
        for face_counter_1 in xrange(numbre_faces_this_element):
            pos_1 = each_element_faces[face_counter_1]
            for face_counter_2 in xrange(numbre_faces_this_element):
                pos_2 = each_element_faces[face_counter_2]
                if pos_1 == pos_2:
                    if pos_1 not in diagonal:
                        rows_rel_sparse.append(pos_1)
                        cols_rel_sparse.append(pos_2)
                        diagonal.append(pos_1)
                else:
                    rows_rel_sparse.append(pos_1)
                    cols_rel_sparse.append(pos_2)

    data_rel_sparse = np.zeros(len(rows_rel_sparse))
    faces_rel_spare = csr_matrix(
        (data_rel_sparse, (rows_rel_sparse, cols_rel_sparse)),
        shape=(num_total_rel, num_total_rel))

    #fmm matrix
    cols_fmm_sparse = np.zeros(num_meshed_rel)
    rows_fmm_sparse = xrange(0, num_meshed_rel)
    data_fmm_sparse = np.zeros(num_meshed_rel)
    fmm_sparse = csr_matrix(
        (data_fmm_sparse, (rows_fmm_sparse, cols_fmm_sparse)),
        shape=(num_total_rel, 1))

    #source_flux matrix
    cols_source_flux_sparse = np.zeros(num_meshed_rel)
    rows_source_flux_sparse = xrange(0, num_meshed_rel)
    data_source_flux_sparse = np.zeros(num_meshed_rel)
    source_flux_sparse = csr_matrix(
        (data_source_flux_sparse,
         (rows_source_flux_sparse, cols_source_flux_sparse)),
        shape=(num_total_rel, 1))
    #grad_phi matrix
    #	cols_grad_phi_sparse=np.zeros(num_meshed_rel)
    #	rows_grad_phi_sparse=xrange(0,num_meshed_rel)
    #	data_grad_phi_sparse=np.zeros(num_meshed_rel)
    #	grad_phi_sparse=csr_matrix((data_grad_phi_sparse, (rows_grad_phi_sparse, cols_grad_phi_sparse)), shape=(num_total_rel,1))

    this_elem_type = ""
    plot_field = list()
    plot_shape_functions = list()
    #	plot_test_coord=list()
    BC_nodes = list()
    BC_values = list()

    for elem_counter in xrange(number_elements):
        this_elem_type_changed = elem_type_3D[elem_counter]
        if this_elem_type != this_elem_type_changed:
            this_elem_type = this_elem_type_changed
            gauss_points = get_gauss_points_class.get_gauss_points(
                this_elem_type)
            number_local_faces = shape_functions.get_number_faces(
                this_elem_type)
            number_integ_points = len(
                get_gauss_points_class.get_gauss_points(this_elem_type))
            wtri = get_gauss_points_class.get_integration_weight(
                this_elem_type)

        faces_ID_Elem = faces_ID[elem_counter]
        this_element_nodes = elem_nodes_3D[elem_counter]
        mur_r = materials_lib[region_ID_list_3D[elem_counter]].Permeability
        mu_elem = vacuum.mu0 * mur_r
        #		x=nodes_coordenates[this_element_nodes[0]][1]

        # Get W at reference element
        w_local_this_element = list()  #[gauss point][face]
        for each_integ_point in xrange(number_integ_points):

            #u,v,w coordinates
            u = gauss_points[each_integ_point, 0]
            v = gauss_points[each_integ_point, 1]
            w = gauss_points[each_integ_point, 2]

            # Shape functions @ reference element
            w_local_this_point = shape_functions.get_facet_shape_function(
                this_elem_type, u, v, w)
            w_local_this_element.append(w_local_this_point)

# Shape functions @ real element for each face
        w_real_all_points = list(
        )  # w_real_lista[0] contains  the shape function of all points for face 0

        #Boundary conditions
        #		Hxy=field_solution[elem_counter][each_integ_point]
        #		if Hxy[0,0]!=0 or Hxy[1,0]!=0 or Hxy[2,0]!=0:
        #			BC_nodes.append(elem_counter)
        #			BC_values.append(x)

        #   Face 0...Fn
        #P0  W
        #Pn

        for face_counter in xrange(number_local_faces):
            w_real_this_point = list()
            for point_counter in range(0, number_integ_points):
                w_local = w_local_this_element[point_counter][face_counter]
                w_real = operations.convert_local_real_Piola(
                    this_elem_type, w_local[0, 0], w_local[0, 1],
                    w_local[0, 2], this_element_nodes, nodes_coordenates)
                w_real_this_point.append(w_real)
            w_real_all_points.append(w_real_this_point)

# Source fields
        for local_face_counter in xrange(number_local_faces):

            w_1 = copy.deepcopy(w_real_all_points[local_face_counter])
            face_ID_1 = faces_ID_Elem[local_face_counter]

            if faces_list[face_ID_1].elem_2 == elem_counter:
                for each in w_1:
                    each = matrix_aux.invert_w(each)

            elem_ID_all = elem_counter + number_elements_2D

            #			this_3D_ID=points_ID_elem_all.index(elem_ID_all)
            # mmf source integration process
            source = 0
            this_face_nodes = faces_list[face_ID_1].nodes_list
            #
            #
            this_elem = points_ID_elem.index(elem_counter)
            this_gauss_points_ID = points_IDs[this_elem].tolist()

            Hxy = np.zeros((3, 1))
            for each_integ_point in xrange(number_integ_points):
                if run_biot_savart or run_permanent_magnets:
                    #					Hxy=field_solution[elem_counter][each_integ_point]
                    this_point_ID = this_gauss_points_ID[each_integ_point]
                    Hxy[0, 0] = fields[this_point_ID, 0]
                    Hxy[1, 0] = fields[this_point_ID, 1]
                    Hxy[2, 0] = fields[this_point_ID, 2]

                    if Hxy[0, 0] != 0 or Hxy[1, 0] != 0 or Hxy[2, 0] != 0:

                        w_1_this_point = w_1[each_integ_point]

                        #u,v,p coordinates
                        u = gauss_points[each_integ_point, 0]
                        v = gauss_points[each_integ_point, 1]
                        p = gauss_points[each_integ_point, 2]
                        w = w_1_this_point

                        plot_shape_functions.append(w)

                        plot_test_field.append(Hxy)
                        plot_test_coord.append(coordinates[this_point_ID])
                        # Jacobian
                        jac = operations.get_jacobian(this_elem_type,
                                                      this_element_nodes,
                                                      nodes_coordenates, u, v,
                                                      p)
                        det_jac = np.linalg.det(jac)
                        abs_det_jac = np.abs(det_jac)
                        #Integration
                        source = source + wtri * abs_det_jac * matrix_aux.dot_product(
                            w, Hxy)

            fmm_sparse[face_ID_1, 0] = fmm_sparse[face_ID_1, 0] + source

            # Relutances integration process
            for local_face_counter_2 in xrange(number_local_faces):
                w_2 = copy.deepcopy(w_real_all_points[local_face_counter_2])
                face_ID_2 = faces_ID_Elem[local_face_counter_2]

                if faces_list[face_ID_2].elem_2 == elem_counter:
                    for each in w_2:
                        each = matrix_aux.invert_w(each)

                wtot = 0.0
                for each_integ_point in range(0, number_integ_points):
                    u = gauss_points[each_integ_point, 0]
                    v = gauss_points[each_integ_point, 1]
                    p = gauss_points[each_integ_point, 2]

                    # Jacobian
                    jac = operations.get_jacobian(this_elem_type,
                                                  this_element_nodes,
                                                  nodes_coordenates, u, v, p)
                    det_jac = np.linalg.det(jac)
                    abs_det_jac = np.abs(det_jac)

                    # Reluctance
                    w_1_this_point = w_1[each_integ_point]
                    w_2_this_point = w_2[each_integ_point]
                    wtot = wtot + wtri * abs_det_jac * matrix_aux.dot_product(
                        w_1_this_point, w_2_this_point) / mu_elem

                faces_rel_spare[face_ID_1, face_ID_2] += wtot
    print_message("Integration process - Done")

    #%% Connection between the physical line with the circuit node
    print_message("External faces")

    for counter, each_face in enumerate(faces_list):
        if each_face.elem_2 == str_noflux_face:
            for each_face_con in elem_2D_ID:
                nodes_face_shared = all_elem_nodes_3D[each_face_con]
                phys_line = elem_tags[each_face_con][0]

                #Coupling with external reluctances
                for each_coupling in coupling:
                    if each_coupling.PhysLine == phys_line:

                        bool_connect = True
                        for each_node_this_face in each_face.nodes_list:
                            if each_node_this_face not in nodes_face_shared:
                                bool_connect = False

                        if bool_connect:
                            # Redefine the face
                            new_face = Face(
                                each_face.nodes_list, each_face.elem_1,
                                each_coupling.Node + number_elements)
                            faces_list[counter] = new_face
                            each_coupling.Face_ID_List.append(counter)

#%% Insert the flux sources
#	BC_nodes=list()
    if run_surface_integral:
        folder_name = os.path.join(folder_path, results_folder)
        full_path = os.path.join(folder_name, "flux_surface.txt")
        flux_data = np.genfromtxt(full_path, delimiter=' ', dtype='double')
        flux_source = flux_data[:, 1]
        flux_source_elem_ID = flux_data[:, 0]
        num_faces_surface_integral = len(flux_source_elem_ID)
        external_node_surface_ID_counter = 0

        for face_counter in xrange(num_faces_surface_integral):
            this_elem_face_ID = int(flux_source_elem_ID[face_counter])
            this_face_nodes_elem = set(all_elem_nodes_3D[this_elem_face_ID])

            for counter, each_face in enumerate(faces_list):
                this_face_nodes = set(each_face.nodes_list)
                if this_face_nodes_elem.issubset(this_face_nodes):
                    #					print this_elem_face_ID
                    #					external_node_surface_ID=len(coupling)+number_elements-1
                    #					BC_nodes.append(external_node_surface_ID)
                    #					external_node_surface_ID_counter+=1
                    new_face = Face(each_face.nodes_list, each_face.elem_1,
                                    each_face.elem_2)
                    faces_list[counter] = new_face
                    source_flux_sparse[counter] = flux_source[face_counter]
                    faces_rel_spare[counter, counter] = 10000000000000000.0
                    fmm_sparse[counter, 0] = 0.0
#					print each_face.elem_1
#					break

#	BC_values=[0]*len(BC_nodes)

#%% Delete the faces without external connections
    faces_ID_deleted_list = list()
    faces_deleted_list = list()

    #Delete from reluctances and fmm matrix
    counter = 0
    for face_counter in xrange(len(faces_list)):
        if faces_list[face_counter].elem_2 == str_noflux_face:
            faces_ID_deleted_list.append(face_counter)

    faces_rel_spare = matrix_aux.delete_sparse_mask(faces_rel_spare,
                                                    faces_ID_deleted_list, 0)
    faces_rel_spare = matrix_aux.delete_sparse_mask(faces_rel_spare,
                                                    faces_ID_deleted_list, 1)
    fmm_sparse = matrix_aux.delete_sparse_mask(fmm_sparse,
                                               faces_ID_deleted_list, 0)
    source_flux_sparse = matrix_aux.delete_sparse_mask(source_flux_sparse,
                                                       faces_ID_deleted_list,
                                                       0)

    ##Delete from faces_list
    counter = 0
    for each in faces_ID_deleted_list:
        face_ID = each + counter
        this_face = faces_list[face_ID]
        faces_list.remove(this_face)
        faces_deleted_list.append(this_face)
        counter -= 1

#%% Add the external circuit reluctances
    number_deleted = len(faces_deleted_list)
    for counter in xrange(num_non_meshed_rel):

        #reluctance value
        material = external_reluctances[counter].Material
        mur = materials_lib[material].Permeability
        LS = external_reluctances[counter].LS
        mu_elem = vacuum.mu0 * mur
        reluctance_value = LS / mu_elem

        this_position = num_meshed_rel - number_deleted + counter
        faces_rel_spare[this_position, this_position] = reluctance_value
        fmm_sparse[this_position] = external_reluctances[counter].fmm
        source_flux_sparse[this_position] = external_reluctances[counter].flux

    external_nodes_list = list()

    for each in external_reluctances:

        #Get the list of external nodes
        if each.node_from not in external_nodes_list:
            external_nodes_list.append(each.node_from)
        if each.node_to not in external_nodes_list:
            external_nodes_list.append(each.node_to)

#create a new face in the faces_list
        new_face = Face([], each.node_from + number_elements,
                        each.node_to + number_elements)
        faces_list.append(new_face)

#Get the list of external nodes
    for each in coupling:
        if each.Node not in external_nodes_list:
            external_nodes_list.append(each.Node)

    print_message("External faces - Done")

    #%% Incidence matrix
    print_message("Incidence matrix")
    external_nodes = 0

    if run_external_circuit:
        external_nodes += len(external_nodes_list)
#	elif run_surface_integral:
#		external_nodes+=len(BC_nodes)
    else:
        external_nodes += 0

    number_faces_list = len(faces_list)
    total_nodes = number_elements + external_nodes

    rows_incidence_sparse = list()
    cols_incidence_sparse = list()
    data_incidence_sparse = list()

    for counter in xrange(number_faces_list):
        this_face = faces_list[counter]
        rows_incidence_sparse.append(this_face.elem_1)
        cols_incidence_sparse.append(counter)
        data_incidence_sparse.append(1.0)

        rows_incidence_sparse.append(this_face.elem_2)
        cols_incidence_sparse.append(counter)
        data_incidence_sparse.append(-1.0)

    incidence_matrix_sparse = csr_matrix(
        (data_incidence_sparse,
         (rows_incidence_sparse, cols_incidence_sparse)),
        shape=(total_nodes, number_faces_list))

    print_message("Incidence matrix - Done")

    #%%Plot test fields
    Gmsh_file_name = "test_H_field.txt"
    path = os.path.join(results_path, Gmsh_file_name)
    Create_Vector_field(plot_test_coord, plot_test_field, path, "H test")

    Gmsh_file_name = "test_W.txt"
    path = os.path.join(results_path, Gmsh_file_name)
    Create_Vector_field(plot_test_coord, plot_shape_functions, path,
                        "Shape function")

    print_message("Saving matrices")
    np.save(os.path.join(results_path, "faces_rel_spare_algo"),
            faces_rel_spare.toarray())
    np.save(os.path.join(results_path, "fmm_sparse_algol"),
            fmm_sparse.toarray())
    np.save(os.path.join(results_path, "incidence_matrix_algo"),
            incidence_matrix_sparse.toarray())
    print_message("Saving matrices: Done")

    return faces_rel_spare, incidence_matrix_sparse, fmm_sparse, source_flux_sparse, faces_ID, results_path, faces_ID_deleted_list, faces_list, faces_deleted_list, BC_nodes, BC_values
コード例 #2
0
def Get_Gauss_points_list(preProcData, does_write_file, folder_path):
    '''
	Get the coordinates of the Guass points for all elements\n
	Return: list(array with the coordinates)\n
	PreProcData: The data from pre processing\n
	does_write_file: boolean. True: write the files containing the results\n
	folder_path: directory of the folder to write the file
	'''
    #==============================================================================
    # Pre-processor
    mesh_data = preProcData.MeshData
    all_elem_nodes = mesh_data.ElemNodes
    nodes_coordenates = mesh_data.NodesCoordenates
    elem_tags = mesh_data.ElemTags
    elem_type = mesh_data.ElemType

    gauss_points = GaussPoints()
    oper = Operations()

    number_elements = len(elem_tags)
    start_3D = 0
    number_gauss_points = 0
    max_number_points = 0

    for kl in xrange(number_elements):
        if elem_type[kl] <= 3:
            start_3D += 1
        else:
            this_gauss_points = gauss_points.get_gauss_points(elem_type[kl])
            number_gauss_points += float(this_gauss_points.shape[0])
            number_gauss_points_element = float(this_gauss_points.shape[1])
            if number_gauss_points_element > max_number_points:
                max_number_points = number_gauss_points_element

    gauss_points_coordinates = np.zeros(
        (number_gauss_points, max_number_points))

    point_counter = 0
    points_ID_list = list()
    phys_region_list = list()
    for kl in range(start_3D, number_elements):
        integPoints = gauss_points.get_gauss_points(elem_type[kl])
        numnodes = integPoints.shape[0]

        nodes = []
        for eachnode in xrange(numnodes):
            nodes.append(all_elem_nodes[kl][eachnode])
        elem_points_ID = list()
        elem_points_ID.append(kl)
        for integPoint in range(0, numnodes):
            u = integPoints[integPoint, 0]
            v = integPoints[integPoint, 1]
            p = integPoints[integPoint, 2]
            XYZ = oper.convert_local_real(elem_type[kl], u, v, p, nodes,
                                          nodes_coordenates)

            gauss_points_coordinates[point_counter][0] = XYZ[0]
            gauss_points_coordinates[point_counter][1] = XYZ[1]
            gauss_points_coordinates[point_counter][2] = XYZ[2]
            phys_region_list.append(elem_tags[kl][0])
            point_counter += 1
            elem_points_ID.append(int(point_counter - 1))
        points_ID_list.append(elem_points_ID)

#==============================================================================
# Folder results path
    file_names = File_names()
    results_folder = file_names.get_results_folder_name()
    results_path = os.path.join(folder_path, results_folder)
    path = os.path.join(results_path,
                        file_names.get_Gauss_points_list_file_name())
    path_IDs = os.path.join(results_path,
                            file_names.get_Gauss_Points_ID_file_name())
    path_Phys = os.path.join(
        results_path, file_names.get_Gauss_Points_Phys_region_file_name())

    write_numeric_file_numpy(path_Phys, phys_region_list)
    write_numeric_file_numpy(path, gauss_points_coordinates)
    write_numeric_file_numpy(path_IDs, points_ID_list)
    return gauss_points_coordinates, phys_region_list, points_ID_list
コード例 #3
0
def integrate_energy(pre_proc_data, results_path):

    #Instances
    operations = Operations()
    mesh_data = pre_proc_data.MeshData
    get_gauss_points_class = GaussPoints()
    file_names = File_names()

    regions_material = pre_proc_data.RegionMaterial

    #Mesh data
    nodes_coordenates = mesh_data.NodesCoordenates
    elem_tags = mesh_data.ElemTags
    elem_type = mesh_data.ElemType
    elem_nodes = mesh_data.ElemNodes
    number_elements = len(elem_tags)
    xy_plot = list()
    field = list()

    #Reads flux file
    flux_results_file_name = file_names.flux_results_file_name()
    full_path = os.path.join(results_path, flux_results_file_name)
    new_flux = read_numeric_file_numpy(full_path)

    #Read faces_ID
    faces_ID_file_name = file_names.get_faces_ID_file_name()
    full_path = os.path.join(results_path, faces_ID_file_name)
    data = get_data_from_file(full_path)
    faces_ID = get_file_block("$faces_ID", "$Endfaces_ID", 0, data, int)

    #Read faces_from_to
    from_to_file_name = file_names.faces_from_to_file_name()
    full_path = os.path.join(results_path, from_to_file_name)
    faces_from_to = read_numeric_file_numpy(full_path)

    mu0 = 4.0 * math.pi * math.pow(10.0, -7.0)
    materials_lib = get_materials_lib()
    #Get the magnetic induction, based on the 3D elements interpolation
    energy = 0
    counter = -1
    for elem_counter_3D in xrange(number_elements):
        this_elem_type_3D = elem_type[elem_counter_3D]
        nodes_list_3D = mesh_data.ElemNodes[elem_counter_3D]
        gauss_points = get_gauss_points_class.get_gauss_points(
            this_elem_type_3D)
        num_gauss_points = len(gauss_points)
        if this_elem_type_3D == 4:
            counter = counter + 1
            material_name = ""
            for each_region in regions_material:
                if each_region.RegionNumber == elem_tags[elem_counter_3D][0]:
                    material_name = each_region.MaterialName

            mur_r = materials_lib[material_name].Permeability
            mu_elem = mu0 * mur_r
            wtri = get_gauss_points_class.get_integration_weight(
                this_elem_type_3D)

            for each_integ_point in xrange(num_gauss_points):
                u = gauss_points[each_integ_point, 0]
                v = gauss_points[each_integ_point, 1]
                p = gauss_points[each_integ_point, 2]
                b_at_point = get_B_vector_point_uvp(u, v, p, elem_counter_3D,
                                                    counter, elem_type,
                                                    elem_nodes, faces_ID,
                                                    nodes_coordenates,
                                                    new_flux, faces_from_to)
                #				b_at_point=np.array([b_at_point[0,0],b_at_point[1,0],b_at_point[2,0]])

                # Jacobian
                jac = operations.get_jacobian(this_elem_type_3D, nodes_list_3D,
                                              nodes_coordenates, u, v, p)
                det_jac = np.linalg.det(jac)
                abs_det_jac = np.abs(det_jac)

                #					Element energy
                energy = energy + 0.5 * (
                    1.0 /
                    mu_elem) * wtri * abs_det_jac * matrix_aux.dot_product(
                        b_at_point, b_at_point)


#	Gmsh_file_name=file_names.get_B_Gmsh_surface_file_name()
#	path=os.path.join(results_path,Gmsh_file_name)
#	Create_Vector_field(xy_plot,field,path,"B Vector")

    return energy
コード例 #4
0
def Create_B_vector_plot(mesh_data, results_path, tags_plot):

    #Instances
    file_names = File_names()
    get_gauss_points_class = GaussPoints()

    #Reads flux file
    flux_results_file_name = file_names.flux_results_file_name()
    full_path = os.path.join(results_path, flux_results_file_name)
    new_flux = read_numeric_file_numpy(full_path)

    #Read faces_ID
    faces_ID_file_name = file_names.get_faces_ID_file_name()
    full_path = os.path.join(results_path, faces_ID_file_name)
    data = get_data_from_file(full_path)
    faces_ID = get_file_block("$faces_ID", "$Endfaces_ID", 0, data, int)

    #Read faces_from_to
    from_to_file_name = file_names.faces_from_to_file_name()
    full_path = os.path.join(results_path, from_to_file_name)
    faces_from_to = read_numeric_file_numpy(full_path)

    # Mesh data
    nodes_coordenates = mesh_data.NodesCoordenates
    elem_tags = mesh_data.ElemTags
    elem_type = mesh_data.ElemType
    elem_nodes = mesh_data.ElemNodes

    B_list = list()
    xy_plot = list()
    number_elements = len(elem_tags)
    operations = Operations()

    elements_3D_counter = 0
    for elem_counter in range(0, number_elements):
        run_this_element = False
        if tags_plot == "all" or elem_tags[elem_counter][0] in tags_plot:
            run_this_element = True

        if run_this_element and elem_type[elem_counter] > 3:
            this_elem_type = elem_type[elem_counter]

            #			gauss_points=get_gauss_points_class.get_gauss_points(this_elem_type)
            gauss_points = get_gauss_points_class.get_local_element_center_point(
                this_elem_type)
            #			number_integ_points=len(gauss_points)
            number_integ_points = 1
            this_element_nodes = elem_nodes[elem_counter]

            for each_integ_point in range(0, number_integ_points):

                u = gauss_points[each_integ_point, 0]
                v = gauss_points[each_integ_point, 1]
                p = gauss_points[each_integ_point, 2]
                xy_coord = operations.convert_local_real(
                    this_elem_type, u, v, p, this_element_nodes,
                    nodes_coordenates)
                xy_plot.append(xy_coord)
                b_at_point = get_B_vector_point_uvp(u, v, p, elem_counter,
                                                    elements_3D_counter,
                                                    elem_type, elem_nodes,
                                                    faces_ID,
                                                    nodes_coordenates,
                                                    new_flux, faces_from_to)
                B_list.append(
                    np.array(
                        [b_at_point[0, 0], b_at_point[1, 0], b_at_point[2,
                                                                        0]]))
            elements_3D_counter += 1

    Gmsh_file_name = file_names.get_Gmsh_B_field_file_name()
    path = os.path.join(results_path, Gmsh_file_name)
    Create_Vector_field(xy_plot, B_list, path, "B Vector")
コード例 #5
0
def integrate_B_surface(pre_proc_data, face_phys_ID, vol_phys_ID,
                        results_path):

    #Instances
    operations = Operations()
    mesh_data = pre_proc_data.MeshData
    get_gauss_points_class = GaussPoints()
    file_names = File_names()

    #Mesh data
    nodes_coordenates = mesh_data.NodesCoordenates
    elem_tags = mesh_data.ElemTags
    elem_type = mesh_data.ElemType
    elem_nodes = mesh_data.ElemNodes
    number_elements = len(elem_tags)
    xy_plot = list()
    field = list()

    #Reads flux file
    flux_results_file_name = file_names.flux_results_file_name()
    full_path = os.path.join(results_path, flux_results_file_name)
    new_flux = read_numeric_file_numpy(full_path)

    #Read faces_ID
    faces_ID_file_name = file_names.get_faces_ID_file_name()
    full_path = os.path.join(results_path, faces_ID_file_name)
    data = get_data_from_file(full_path)
    faces_ID = get_file_block("$faces_ID", "$Endfaces_ID", 0, data, int)

    #Read faces_from_to
    from_to_file_name = file_names.faces_from_to_file_name()
    full_path = os.path.join(results_path, from_to_file_name)
    faces_from_to = read_numeric_file_numpy(full_path)

    flux = 0
    for elem_counter in xrange(number_elements):
        this_elem_type = elem_type[elem_counter]
        if this_elem_type == 2 and elem_tags[elem_counter][0] == face_phys_ID:
            nodes_list_2D = mesh_data.ElemNodes[elem_counter]
            gauss_points = get_gauss_points_class.get_gauss_points(
                this_elem_type)
            num_gauss_points = len(gauss_points)

            #Area and normal vector of the 2D element
            node1 = elem_nodes[elem_counter][0]
            node2 = elem_nodes[elem_counter][1]
            node3 = elem_nodes[elem_counter][2]
            P1 = np.array([
                nodes_coordenates[node1][0], nodes_coordenates[node1][1],
                nodes_coordenates[node1][2]
            ])
            P2 = np.array([
                nodes_coordenates[node2][0], nodes_coordenates[node2][1],
                nodes_coordenates[node2][2]
            ])
            P3 = np.array([
                nodes_coordenates[node3][0], nodes_coordenates[node3][1],
                nodes_coordenates[node3][2]
            ])
            A = P2 - P1
            B = P3 - P1
            AxB = np.cross(A, B)
            nor = linalg.norm(AxB)
            n = AxB / nor
            area = 0.5 * nor

            #Get the real coordinates of the 2D element Gauss points
            xy_local = list()
            for each_integ_point in xrange(num_gauss_points):
                xyz = operations.convert_local_real(
                    this_elem_type, gauss_points[each_integ_point, 0],
                    gauss_points[each_integ_point,
                                 1], 0, nodes_list_2D, nodes_coordenates)
                xy_local.append(xyz)

#Get the magnetic induction, based on the 3D elements interpolation
            counter = -1
            B_list = list()
            for elem_counter_3D in xrange(number_elements):
                this_elem_type_3D = elem_type[elem_counter_3D]
                nodes_list_3D = mesh_data.ElemNodes[elem_counter_3D]
                if this_elem_type_3D == 4:
                    counter = counter + 1
                    if elem_tags[elem_counter_3D][0] == vol_phys_ID and set(
                            nodes_list_2D) < set(nodes_list_3D):
                        for xyz in xy_local:

                            #Convert the real coordinates of the 2D element into local coordinates
                            uvp = operations.convert_real_to_local(
                                elem_counter_3D, this_elem_type_3D, xyz[0],
                                xyz[1], xyz[2], nodes_list_3D,
                                nodes_coordenates)
                            xy_plot.append(xyz)
                            b_at_point = get_B_vector_point_uvp(
                                uvp[0], uvp[1], uvp[2], elem_counter_3D,
                                counter, elem_type, elem_nodes, faces_ID,
                                nodes_coordenates, new_flux, faces_from_to)
                            b_at_point = np.array([
                                b_at_point[0, 0], b_at_point[1, 0],
                                b_at_point[2, 0]
                            ])
                            field.append(b_at_point)
                            B_list.append(b_at_point)
                        break


#Integration process
            for each_integ_point in xrange(num_gauss_points):
                B = B_list[each_integ_point].dot(n)

                flux = flux + B * area / 3.0

    Gmsh_file_name = file_names.get_B_Gmsh_surface_file_name()
    path = os.path.join(results_path, Gmsh_file_name)
    Create_Vector_field(xy_plot, field, path, "B Vector")

    return flux
コード例 #6
0
def interpolated_along_line(vol_phys_ID, xyz_list, pre_proc_data,
                            results_path):
    operations = Operations()
    mesh_data = pre_proc_data.MeshData
    get_gauss_points_class = GaussPoints()
    shape_functions = ShapeFuncions()
    file_names = File_names()
    #Mesh data
    nodes_coordenates = mesh_data.NodesCoordenates
    elem_tags = mesh_data.ElemTags
    elem_type = mesh_data.ElemType
    elem_nodes = mesh_data.ElemNodes
    number_elements = len(elem_tags)
    xy_plot = list()
    field = list()

    #Reads flux file
    flux_results_file_name = file_names.flux_results_file_name()
    full_path = os.path.join(results_path, flux_results_file_name)
    new_flux = read_numeric_file_numpy(full_path)

    #Read faces_ID
    faces_ID_file_name = file_names.get_faces_ID_file_name()
    full_path = os.path.join(results_path, faces_ID_file_name)
    data = get_data_from_file(full_path)
    faces_ID = get_file_block("$faces_ID", "$Endfaces_ID", 0, data, int)

    #Read faces_from_to
    from_to_file_name = file_names.faces_from_to_file_name()
    full_path = os.path.join(results_path, from_to_file_name)
    faces_from_to = read_numeric_file_numpy(full_path)

    for xyz in xyz_list:
        counter = -1
        this_element = False
        for elem_counter in range(0, number_elements):
            this_elem_type = elem_type[elem_counter]
            if this_elem_type == 4:
                counter = counter + 1
                if elem_tags[elem_counter][0] in vol_phys_ID:
                    nodes_list = mesh_data.ElemNodes[elem_counter]
                    uvp = operations.convert_real_to_local(
                        elem_counter, this_elem_type, xyz[0], xyz[1], xyz[2],
                        nodes_list, nodes_coordenates)
                    N = shape_functions.get_node_shape_function(
                        this_elem_type, uvp[0], uvp[1], uvp[2])
                    if max(N) <= 1.0 and min(N) >= 0.0:
                        this_element = True

                        break
        if this_element:
            b_at_point = get_B_vector_point_uvp(uvp[0], uvp[1], uvp[2],
                                                elem_counter, counter,
                                                elem_type, elem_nodes,
                                                faces_ID, nodes_coordenates,
                                                new_flux, faces_from_to)
            b_at_point = np.array(
                [b_at_point[0, 0], b_at_point[1, 0], b_at_point[2, 0]])
            field.append(b_at_point)
        else:
            b_at_point = np.array([0.0, 0.0, 0.0])
            field.append(b_at_point)

    Gmsh_file_name = file_names.get_B_Gmsh_line_file_name()
    path = os.path.join(results_path, Gmsh_file_name)
    Create_Vector_field(xyz_list, field, path, "B Vector")

    Gmsh_file_name = "line_field.txt"
    path = os.path.join(results_path, Gmsh_file_name)
    write_numeric_file_numpy(path, field)