def scale(data_matrix): num_rows, num_cols = shape(data_matrix) means = [mean(get_column(data_matrix,j)) for j in range(num_cols)] stdevs = [standard_deviation(get_column(data_matrix,j)) for j in range(num_cols)] return means, stdevs
def main(): """The application entry point""" print 'EXERCISE 1A' print '===========' print 'This program takes a CSV file, asks you to select a row from that' print 'file, and then computes the mean and standard deviation of the' print 'values in that row.' print file_path = io.get_and_confirm_input('Enter csv file with values: ') data = io.read_csv_file(file_path) if not data: raise RuntimeError('No data found in file {}'.format(file_path)) column = io.choose_from_list( 'Which column would you like to use:', data[0].keys()) if column not in data[0]: raise RuntimeError('Invalid column {}'.format(column)) values = linked_list.LinkedList() for each in data: values.insert(each[column]) for each in values: print each print 'Mean: ', statistics.mean(values) print 'Std Dev: ', statistics.standard_deviation(values)
def scale(data_matrix): """вернуть средние и стандартные отклонения для каждого столбца""" num_rows, num_cols = shape(data_matrix) means = [mean(get_column(data_matrix,j)) for j in range(num_cols)] stdevs = [standard_deviation(get_column(data_matrix,j)) for j in range(num_cols)] return means, stdevs
def normalized_data(self, data): """Return the given data in normalized form. Arguments: data(list): A list of data points Returns: list: Same data points, normalized. """ mean = statistics.mean(data) stddev = statistics.standard_deviation(data) return [(each - mean)/stddev for each in data]
[random.random() for _ in range(50)] + [200 + random.random() for _ in range(50)]) print("bootstrap_statistic(close_to_100, median, 100):") print(bootstrap_statistic(close_to_100, median, 100)) print("bootstrap_statistic(far_from_100, median, 100):") print(bootstrap_statistic(far_from_100, median, 100)) print() random.seed(0) # so that you get the same results as me bootstrap_betas = bootstrap_statistic(list(zip(x, daily_minutes_good)), estimate_sample_beta, 100) bootstrap_standard_errors = [ standard_deviation([beta[i] for beta in bootstrap_betas]) for i in range(4) ] print("bootstrap standard errors", bootstrap_standard_errors) print() print("p_value(30.63, 1.174)", p_value(30.63, 1.174)) print("p_value(0.972, 0.079)", p_value(0.972, 0.079)) print("p_value(-1.868, 0.131)", p_value(-1.868, 0.131)) print("p_value(0.911, 0.990)", p_value(0.911, 0.990)) print() print("regularization") random.seed(0)
def least_squares_fit(x, y): """при заданных обучающих значениях x и y, найти значения alpha и beta на основе МНК""" beta = correlation(x, y) * standard_deviation(y) / standard_deviation(x) alpha = mean(y) - beta * mean(x) return alpha, beta
def least_squares_fit(x, y): """given training values for x and y, find the least-squares values of alpha and beta""" beta = correlation(x, y) * standard_deviation(y) / standard_deviation(x) alpha = mean(y) - beta * mean(x) return alpha, beta
def test_should_correctly_compute_standard_deviation(self): self.assertAlmostEqual( 2.73861, statistics.standard_deviation(range(1, 10)), places=5)